TY - INPR A1 - Langlotz, Tobias A1 - Bimber, Oliver T1 - Unsynchronized 4D Barcodes N2 - We present a novel technique for optical data transfer between public displays and mobile devices based on unsynchronized 4D barcodes. We assume that no direct (electromagnetic or other) connection between the devices can exist. Time-multiplexed, 2D color barcodes are displayed on screens and recorded with camera equipped mobile phones. This allows to transmit information optically between both devices. Our approach maximizes the data throughput and the robustness of the barcode recognition, while no immediate synchronization exists. Although the transfer rate is much smaller than it can be achieved with electromagnetic techniques (e.g., Bluetooth or WiFi), we envision to apply such a technique wherever no direct connection is available. 4D barcodes can, for instance, be integrated into public web-pages, movie sequences or advertisement presentations, and they encode and transmit more information than possible with single 2D or 3D barcodes. KW - Maschinelles Sehen KW - Computer Vision KW - Barcodes Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-8531 ER - TY - INPR A1 - Grundhöfer, Anselm A1 - Bimber, Oliver T1 - Real-Time Adaptive Radiometric Compensation N2 - Recent radiometric compensation techniques make it possible to project images onto colored and textured surfaces. This is realized with projector-camera systems by scanning the projection surface on a per-pixel basis. With the captured information, a compensation image is calculated that neutralizes geometric distortions and color blending caused by the underlying surface. As a result, the brightness and the contrast of the input image is reduced compared to a conventional projection onto a white canvas. If the input image is not manipulated in its intensities, the compensation image can contain values that are outside the dynamic range of the projector. They will lead to clipping errors and to visible artifacts on the surface. In this article, we present a novel algorithm that dynamically adjusts the content of the input images before radiometric compensation is carried out. This reduces the perceived visual artifacts while simultaneously preserving a maximum of luminance and contrast. The algorithm is implemented entirely on the GPU and is the first of its kind to run in real-time. KW - Maschinelles Sehen KW - CGI KW - Bildbasiertes Rendering KW - Display KW - Projektionsverfahren KW - Radiometrische Kompensation KW - Projektion KW - Projekor-Kamera System KW - Bildkorrektur KW - Visuelle Wahrnehmung KW - radiometric compensation KW - projection KW - projector-camera systems KW - image correction KW - visual perception Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-7848 ER - TY - INPR A1 - Zollmann, Stefanie A1 - Bimber, Oliver T1 - Imperceptible Calibration for Radiometric Compensation N2 - We present a novel multi-step technique for imperceptible geometry and radiometry calibration of projector-camera systems. Our approach can be used to display geometry and color corrected images on non-optimized surfaces at interactive rates while simultaneously performing a series of invisible structured light projections during runtime. It supports disjoint projector-camera configurations, fast and progressive improvements, as well as real-time correction rates of arbitrary graphical content. The calibration is automatically triggered when mis-registrations between camera, projector and surface are detected. KW - Association for Computing Machinery / Special Interest Group on Graphics KW - CGI KW - Maschinelles Sehen KW - unsichtbare Muster Projektion KW - Projektor-Kamera Systeme KW - Kalibrierung KW - Radiometrische Kompensation KW - imperceptible pattern projection KW - projector-camera systems KW - calibration KW - radiometric compensation Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-8094 ER - TY - INPR A1 - Wetzstein, Gordon A1 - Bimber, Oliver T1 - A Generalized Approach to Radiometric N2 - We propose a novel method that applies the light transport matrix for performing an image-based radiometric compensation which accounts for all possible types of light modulation. For practical application the matrix is decomposed into clusters of mutually influencing projector and camera pixels. The compensation is modeled as a linear system that can be solved with respect to the projector patterns. Precomputing the inverse light transport in combination with an efficient implementation on the GPU makes interactive compensation rates possible. Our generalized method unifies existing approaches that address individual problems. Based on examples, we show that it is possible to project corrected images onto complex surfaces such as an inter-reflecting statuette, glossy wallpaper, or through highly-refractive glass. Furthermore, we illustrate that a side-effect of our approach is an increase in the overall sharpness of defocused projections. KW - Association for Computing Machinery / Special Interest Group on Graphics KW - CGI KW - Maschinelles Sehen Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-7625 ER -