TY - CHAP A1 - Tsutsumi, Kazutoshi A1 - Hashimoto, Hiromi T1 - A Development of the Building Kansei Information Retrieval System N2 - The purpose of this research is to develop the method to retrieve a building name from the impression of the building. First, the images of the building are registered as database by the questionnaire. Next, the images of the objective building are compared with the degree of matching in image databases, and the building with high synthetic matching degree is retrieved. This system could get a good retrieval result. Moreover, image processing was done, and image databases are trained by neural network from the amount of characteristics of the image, and the retrieval system by image processing was examined. KW - Mehragentensystem KW - Lernendes System KW - Informationssystem Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1884 ER - TY - JOUR A1 - Ma, Zhiliang A1 - Qin, Liang T1 - A Framework of Management Information System for Construction Projects N2 - A comprehensive framework of information management system for construction projects in China has been established through extensive literature survey and field investigation. It utilizes the potential information technologies and covers the practical management patterns as well as the major aspects of construction project management. It can be used to guide and evaluate the design of the information management systems for construction projects in order to make the system to be applicable to a wide variety of construction projects and survive the changes in project management. KW - Mehragentensystem KW - Lernendes System KW - Managementinformationssystem Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2126 ER - TY - JOUR A1 - El-Rayes, Khaled A1 - Hyari, Khalied T1 - A Multi-objective Model for Optimizing Construction Planning of Repetitive Infrastructure Projects N2 - This paper presents the development of a model for optimizing resource utilization in repetitive infrastructure projects. The model provides the capability of simultaneous minimization of both project duration and work interruptions for construction crews. The model provides in a single run, a set of nondominated solutions that represent the tradeoff between these two objectives. The model incorporates a multiobjective genetic algorithm and scheduling algorithm. The model initially generates a randomly selected set of solutions that evolves to a near optimal set of tradeoff solutions in subsequent generations. Each solution represents a unique scheduling solution that is associated with certain project duration and a number of interruption days for utilized construction crews. As such, the model provides project planners with alternative schedules along with their expected duration and resource utilization efficiency. KW - Mehragentensystem KW - Lernendes System KW - Infrastruktur Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2135 ER - TY - JOUR A1 - Yabuki, Nobuyoshi A1 - Kotani, Jun A1 - Shitani, Tomoaki T1 - A Steel Bridge Design System Architecture using VR-CAD and Web Service-based Multi-Agents N2 - This paper presents a new design environment based on Multi-Agents and Virtual Reality (VR). In this research, a design system with a virtual reality function was developed. The virtual world was realized by using GL4Java, liquid crystal shutter glasses, sensor systems, etc. And the Multi-Agent CAD system with product models, which had been developed before, was integrated with the VR design system. A prototype system was developed for highway steel plate girder bridges, and was applied to a design problem. The application verified the effectiveness of the developed system. KW - Mehragentensystem KW - Lernendes System KW - Stahlbrücke KW - Virtuelle Realität Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2146 ER - TY - JOUR A1 - Albert, Andrej A1 - Freischlad, Mark A1 - Pullmann, Torben T1 - Acquisition of Conceptual Design Knowledge in Structural Engineering N2 - Expert systems integrating fuzzy reasoning techniques represent a powerful tool to support practicing engineers during the early stages of structural design. In this context fuzzy models have proved themselves to be very suitable for the representation of complex design knowledge. However their definition is a laborious task. This paper introduces an approach for the design and the optimization of fuzzy systems based upon Genetic Programming. To keep the emerging fuzzy systems transparent a new framework for the definition of linguistic variables is also introduced. KW - Mehragentensystem KW - Lernendes System KW - Wissensverarbeitung Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2154 ER - TY - JOUR A1 - Chang, Chihyuan A1 - Chang, Yuanchu A1 - Huang, Shyhmeng T1 - Application of a Agent Mechanism to the Small-scale Maintenance of School Buildings N2 - This paper presents an agent-based software, Virtual Administrator System (VAS) for the smallscale maintenance of school buildings. VAS is capable of handling a heavy load of routine, lowtech maintenance jobs. It assigns a different priority to each job application according to its significance and urgency, and automatically adjusts schedules for maintenance engineers when on-site supervision is needed. The system can help ease off the burden of routine small-scale maintenance work, making it more cost-effective and efficient in the overall management of school building maintenance. VAS posts jobs on the Web in a multi-media format and classified all applications into four categories: the on-call maintenance contract, the term maintenance contract, the guaranty maintenance contract, and the regular maintenance contract. It then estimates their urgency level and passes the information to maintenance engineers who will decide whether on-site inspection is needed. Based on the engineers’ feedback, VAS automatically implements the scheduling for inspection as well as sends out real-time or batch notifications to contractors. All these activities are recorded in a database to allow continuous research and data mining and the analysis and diagnosis of specific jobs for followup maintenance plans. KW - Mehragentensystem KW - Lernendes System KW - Schulgebäude KW - Facility-Management Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2165 ER - TY - JOUR A1 - Zavadskas, Edmundas Kazimieras A1 - Kaklauskas, Arturas A1 - Viteikiene, Milda T1 - Database of Best Practices and Decision Support Web-based System for Construction Innovation N2 - Many construction and facilities management Web sites can be found on the Internet. The interested parties on construction and facilities management Web sites can find databases of best practices, calculators, analyzers, software, expert and decision support systems, neural networks, etc. Technological innovation mainly through changes in the availability of information and communication technology inclusive databases of best practices, calculators, analyzers, software, neural networks, decision support and expert systems that have been provided by a variety of new services developed by the construction and facilities management sectors. Most of all calculators, analyzers, software, decision support and expert systems, neural networks and on-line systems seek to find out how to make the most economic decisions and most of all these decisions are intended only for economic objectives. Alternatives under evaluation have to be evaluated not only from the economic position, but take into consideration qualitative, technical, technological and other characteristics as well. Based on the analysis of the existing calculators, analyzers, information, expert and decision support systems, neural networks and in order to determine most efficient versions of best practices a Decision Support Web-Based System for Construction Innovation (IDSS) was developed by Vilnius Gediminas Technical University. KW - Mehragentensystem KW - Lernendes System KW - Wissensverarbeitung Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2173 ER - TY - JOUR A1 - Motawa, Ibrahim A1 - Anumba, Chimay A1 - El-Hamalawi, A. T1 - Development of a Fuzzy System for Change Prediction in Construction Projects N2 - Change management has been the focus of different IT systems. These IT systems were developed to represent design information, record design rationale, facilitate design coordination and changes. They are largely based on managing reactive changes, particularly design changes, in which changes are recorded and then propagated to the relevant project members. However, proactive changes are hardly dealt with in IT systems. Proactive changes require estimating the likelihood of occurrence of a change event as well as estimating the degree of change impacts on project parameters. Changes in construction projects often result from the uncertainty associated with the imprecise and vague knowledge of much project information at the early stages of projects. This is a major outcome of the case studies carried out as part of this research. Therefore, the proposed model considers that incomplete knowledge and certain project characteristics are always behind change causes. For proactive changes, predicting a change event is the main task for modelling. The prediction model should strive to integrate these main elements: 1) project characteristics that lead to change 2) causes of change, 3) the likelihood of change occurrence, and 4) the change consequences. It should also define the dependency relationships between these elements. However, limited data (documented) are only available from previous projects for change cases and many of the above elements can only be expressed in linguistic terms. This means that the model will simulate the uncertainty and subjectivity associated with these sets of elements. Therefore, a fuzzy model is proposed in this research to capture these elements. The model analyses the impact of each set of elements on the other by assigning fuzzy values for these elements that express the uncertainty and subjectivity of their impact. The main aim is to predict change events and evaluate change effects on project parameters. The fuzzy model described above was developed in an IT system for operational purposes and was designed as a Java package of components with their supporting classes, beans, and files. This paper describes the development and the architecture of the proposed IT system to achieve these requirements. The system is intended to help project teams in dealing with change causes and then the change consequences in construction projects. KW - Mehragentensystem KW - Lernendes System KW - Fuzzy-Logik Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2180 ER - TY - JOUR A1 - Kicinger, Rafal A1 - Arciszewski, Tomasz A1 - De Jong, Kenneth T1 - Distributed Evolutionary Design: Island-Model-based Optimization of Steel Skeleton Structures in Tall Buildings N2 - This paper presents results of a study on distributed, or parallel, evolutionary computation in the topological design of steel structural systems in tall buildings. It describes results of extensive experimental research on various parallel evolutionary architectures applied to a complex structural design problem. The experiments were conducted using Inventor 2003, a networkbased evolutionary design support tool developed at George Mason University. First, a general introduction to evolutionary computation is provided with an emphasis on recent developments in parallel evolutionary architectures. Next, a discussion of conceptual design of steel structural systems in tall buildings is presented. Further, Inventor 2003 is briefly introduced as well as its design representation and evolutionary computation characteristics. Next, the results obtained from systematic design experiments conducted with Inventor 2003 are discussed. The objective of these experiments was to qualitatively and quantitatively investigate evolution of steel structural systems in tall buildings during a distributed evolutionary design process as well as to compare efficiency and effectiveness of various parallel evolutionary architectures with the traditional evolutionary design approaches. Two connectivity topologies (ring topology and fully-connected topology) have been investigated for four populations of structural designs evolving in parallel and using various migration strategies. Also, results of the initial sensitivity studies are reported in which two ways of initializing distributed evolutionary design processes were investigated, using either arbitrarily selected designs as initial parents or randomly generated ones. Finally, initial research conclusions are presented. KW - Mehragentensystem KW - Lernendes System KW - Stahlbau KW - Skelettbau KW - Optimierung Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2195 ER - TY - JOUR A1 - Abdalla, Jamal T1 - Elements of an Agent-based Mediative Communication Protocol for Design Objects N2 - Integrated structural engineering system usually consists of large number of design objects that may be distributed across different platforms. These design objects need to communicate data and information among each other. For efficient communication among design objects a common communication protocol need to be defined. This paper presents the elements of a communication protocol that uses a mediator agent to facilitate communication among design objects. This protocol is termed the Mediative Communication Protocol (MCP). The protocol uses certain design communication performatives and the semantics of an Agent Communication language (ACL) mainly the Knowledge and Query Manipulation Language (KQML) to implement its steps. Details of a Mediator Agent, that will facilitate the communication among design objects, is presented. The Unified Modeling Language (UML) is used to present the Meditative protocol and show how the mediator agent can be use to execute the steps of the meditative communication protocol. An example from structural engineering application is presented to demonstrate and validate the protocol. It is concluded that the meditative protocol is a viable protocol to facilitate object-to-object communication and also has potential to facilitate communication among the different project participants at the higher level of integrated structural engineering systems. KW - Mehragentensystem KW - Lernendes System KW - Kommunikationsprotokoll Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2207 ER - TY - JOUR A1 - Geibig, Oliver A1 - Schnellenbach-Held, Martina T1 - Implementation of an Agent-based Bidding Consortium in the Architecture of an Agent-based Virtual Marketplace N2 - In this research project we intend to transfer the whole AEC-Bidding process to an agent-based virtual marketplace. Hereby, the existing legal regulations have to be considered. Important aspects in developing the virtual marketplace are to provide the possibility to realize an agentbased bidding consortium as well as to integrate subcontractors. KW - Mehragentensystem KW - Lernendes System KW - Ausschreibung KW - Internet Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2214 ER - TY - CHAP A1 - Hartmann, Dietrich A1 - Meißner, Udo F. A1 - Rueppel, Uwe T1 - Integration of Productmodel Databases into Multi-Agent Systems N2 - This paper deals with two different agent-based approaches aimed at the incorporation of complex design information into multi-agent planning systems. The first system facilitates collaborative structural design processes, the second one supports fire engineering in buildings. Both approaches are part of two different research projects that belong to the DFG1 priority program 1103 entitled “Network-based Co-operative Planning Processes in Structural Engineering“ (DFG 2000). The two approaches provide similar database wrapper agents to integrate relevant design information into two multi-agent systems: Database wrapper agents make the relevant product model data usable for further agents in the multi-agent system, independent on their physical location. Thus, database wrapper agents act as an interface between multi-agent system and heterogeneous database systems. The communication between the database wrapper agents and other requesting agents presumes a common vocabulary: a specific database ontology that maps database related message contents into database objects. Hereby, the software-wrapping technology enables the various design experts to plug in existing database systems and data resources into a specific multi-agent system easily. As a consequence, dynamic changes in the design information of large collaborative engineering projects are adequately supported. The flexible architecture of the database wrapper agent concept is demonstrated by the integration of an XML and a relational database system. KW - Ingenieurbau KW - Verteiltes System KW - Planungsprozess KW - Modellierung KW - Mehragentensystem Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1410 ER - TY - JOUR A1 - Willenbacher, Heiko A1 - Hübler, Reinhard T1 - Intelligent Link-Management for the Support of Integration in Building Life Cycle N2 - The processes in the life cycle of buildings are characterised by highly distinct teamwork. The integration of all the distributed working participants, by providing an environment, which especially supports the communication and collaboration between the actors, is a fundamental step to improve the efficiency of the involved processes and to reduce the total costs. In this article, a link based modelling approach and its “intelligent” link management is introduced (1). This approach realises an integration environment based on a special building model that acts as a decision support system. The link-based modelling is characterised by the definition and specialisation of links between partial models. These intelligent managed links enable a very flexible and task specific data access and exchange between all the different views and partial models of the participants. KW - Mehragentensystem KW - Lernendes System KW - Bauwerk KW - Lebenszyklus Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2223 ER - TY - THES A1 - Willenbacher, Heiko T1 - Interaktive verknüpfungsbasierte Bauwerksmodellierung als Integrationsplattform für den Bauwerkslebenszyklus T1 - Interactive link-based building modelling as an integration platform for the building life cycle N2 - Den Gegenstand der Dissertation bilden die Konzeption und die exemplarische Realisierung eines verknüpfungsbasierten Bauwerksmodellierungsansatzes zur Schaffung einer integrierenden Arbeits- und Planungsumgebung für den Lebenszyklus von Bauwerken. Die Basis der Integration bildet ein deklarativ ausgerichteter Bauwerksmodellverbund bestehend aus abstrahierten, domänenspezifischen Partialmodellen. Auf Grund der de facto existierenden Dynamik im Bauwerkslebenszyklus werden sowohl der Bauwerksmodellverbund als auch die einzelnen Partialmodelle dynamisch modifizierbar konzipiert und auf Basis spezieller Modellverwaltungssysteme technisch realisiert. Die Verständigung innerhalb der vorgeschlagenen Gesamtbauwerksmodellarchitektur basiert auf anwenderspezifisch zu erstellenden Verknüpfungen zwischen den Partialmodellen und wird im Sinne einer hybriden Modellarchitektur durch eine zentrale, die Verknüpfungen verwaltende Komponente koordiniert. Zur Verwaltung und Abarbeitung der Verknüpfungen wird der Einsatz von Softwareagenten im Rahmen eines Multiagentensystems vorgeschlagen und diskutiert. N2 - The subject of this thesis is the conception and the exemplary realisation of a link-based building modelling approach for the creation of an integrating work and planning environment for the life cycle of buildings. The basis of the integration forms a declarative aligned building model compound consisting of abstract, domain-specific partial models. Due to the in fact existing dynamics in the building life cycle, both the building model compound and the individual partial models are dynamically modifiable. The communication within the suggested total building model architecture is based on specific links provided by users between the partial models. This link-based communication is co-ordinated in the sense of a hybrid model architecture by a central, the links administering component. For the administration and processing of the links, a multiagent-system is suggested. KW - Bauwerk KW - Modellierung KW - Produktlebenszyklus KW - Planungsprozess KW - Mehragentensystem KW - Partialmodelle KW - Integration KW - Bauwerkslebenszyklus KW - Dynamik KW - Verknüpfungen KW - building modelling KW - partial models KW - building life cycle KW - dynamics KW - links Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20040216-328 ER - TY - CHAP A1 - Meißner, Udo F. A1 - Rueppel, Uwe A1 - Theiss, Mirko T1 - Network-Based Fire Engineering Supported by Agents N2 - Building design in Civil Engineering is characterized by the cooperation of experts in multiple disciplines. Close cooperation of engineers in different fields is the basis of high product quality, short development periods and a minimum of investment costs. For each building the engineers have to create a new fire engineering model. The consistent realization of the fire engineering model in all details has high demands on communication, collaboration and building models. Thereby, to preserve the related design models consistent to each other and compatible with the rules of fire engineering is a complex task. In addition, regulations and guidelines vary according to the building location, so the knowledge base must be integrated dynamically into the planning process. This contribution covers the integration of engineers and design models into a cooperation network on the basis of mobile agents. The distributed models of architectural design, structural planning and fire engineering are supported. These models are implemented as XML-based models which can be accessed by mobile agents for information retrieval and for processing tasks. Agents are provided to all planners, they are enabled to check up the distributed design models with the knowledge base of the fire protection regulations,. With the use of such an agent each planner is supported to check up his planning for accordance with the fire protection requirements. The fire-engineering-agent analyzes the design and detects inconsistencies by processing fire protection requirements and design model facts in a rule-based expert system. The possibility to check the planning information at an early state in the sense of compatibility to the fire protection regulations enables a comprehensive diagnosis of the design and the reduction of planning errors. KW - Ingenieurbau KW - Verteiltes System KW - Planungsprozess KW - Modellierung KW - Brandschutz KW - Mehragentensystem Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1447 ER - TY - CHAP A1 - Yamabe, Yuichiro A1 - Kawamura, Hiroshi A1 - Tani, Akinori T1 - Optimal Design for Recurrent Architecture Network Harmonized with Circulation-type Societies by Applying Genetic Algorithms to Multiagent Model N2 - In this paper, a circulation-type society is expressed by recurrent architecture network described with multi-agent model which consists of the following agents: user, builder, reuse maker, fabricator, waste disposer, material maker and earth bank (see Fig.1). Structural members, materials, resources and monies move among these agents. Each agent has its own rules and aims, regarding structural damages, lifetime, cost reduction, numbers of structural members and structural systems. Reasonable prices of members (fresh, reused, recycled and disposed) can be optimized by GAs in this system considering equal distribution of monies among agents. KW - Mehragentensystem KW - Lernendes System KW - Genetischer Algorithmus Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1892 ER - TY - JOUR A1 - Takagi, Kousuke A1 - Tani, Akinori A1 - Kawamura, Hiroshi T1 - Research on Intelligent Fuzzy Optimal Active and Hybrid Control Systems of Building Structures - Verification of Optimization Method on Switching Rules of Control Forces N2 - Recently, many reseraches on active control systems of building structures are preformed based on modern control theory and are installed real buildings. The authors have already proposed intelligent fuzzy optimal active control (IFOAC) systems. IFOAC systems imitate intelligent activities of human brains such as prediction, adaptation, decision-kaking and so on. In IFOAC systems, objective and subjective judgements on the active control can be taken into account. However, IFOAC systems are considered to be suitable for far-field erathquake and control effect becomes small in case of near-field earthqaukes which include a few velosity pules with large amplitudes. To improve control effect in case of near-souece earthquakes, the authors have also proposed hybrid control (HC) systems, in which IFOAC systems and fuzzy control system are combined. In HC systems, the fuzzy control systems are introduced as a reflective fuzzy active control (RFAC) system and imitates spinal reflection of human. In HC systems, active control forces are activated to buildings in accordance with switching rules on active control forces. In this paper, optimizations on fuzzy control rules in RFAC system and switching rules of active control forces in HC system are performed by Parameter-Free Genetic Algorithms (PfGAs). Here, the optimization is performed by using different earthquake inputs. The results of digital simulations show that the HC system can reduce maximal response displacements under restrictions on strokes of the actuator effectively in case of a near-source earthquake and the effectiveness of the proposed HC system is discussed and clarified. KW - Mehragentensystem KW - Lernendes System KW - Fuzzy-Logik KW - Optimierung Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2238 ER - TY - JOUR A1 - Likhitruangsilp, Veerasak A1 - Ioannou, Photios T1 - Risk-sensitive Markov Decision Process for Underground Construction Planning and Estimating N2 - This paper presents an application of dynamic decision making under uncertainty in planning and estimating underground construction. The application of the proposed methodology is illustrated by its application to an actual tunneling project—The Hanging Lake Tunnel Project in Colorado, USA. To encompass the typical risks in underground construction, tunneling decisions are structured as a risk-sensitive Markov decision process that reflects the decision process faced by a contractor in each tunneling round. This decision process consists of five basic components: (1) decision stages (locations), (2) system states (ground classes and tunneling methods), (3) alternatives (tunneling methods), (4) ground class transition probabilities, and (5) tunneling cost structure. The paper also presents concepts related to risk preference that are necessary to model the contractor’s risk attitude, including the lottery concept, utility theory, and the delta property. The optimality equation is formulated, the model components are defined, and the model is solved by stochastic dynamic programming. The main results are the optimal construction plans and risk-adjusted project costs, both of which reflect the dynamics of subsurface construction, the uncertainty about geologic variability as a function of available information, and the contractor’s risk preference. KW - Mehragentensystem KW - Lernendes System KW - Tunnel KW - Markowschke KW - Kette Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2247 ER - TY - CHAP A1 - Alda, Sascha A1 - Cremers, Armin B. A1 - Bilek, Jochen T1 - Support of Collaborative Structural Design Processes through the Integration of Peer-to-Peer and Multiagent Architectures N2 - Structural engineering projects are increasingly organized in networked cooperations due to a permanently enlarged competition pressure and a high degree of complexity while performing the concurrent design activities. Software that intends to support such collaborative structural design processes implicates enormous requirements. In the course of our common research work, we analyzed the pros and cons of the application of both the peer-to-peer (University of Bonn) and multiagent architecture style (University of Bochum) within the field of collaborative structural design. In this paper, we join the benefits of both architecture styles in an integrated conceptual approach. We demonstrate the surplus value of the integrated multiagent–peer-to-peer approach by means of an example scenario in which several structural engineers are co-operatively designing the basic structural elements of an arched bridge, applying heterogeneous CAD systems. KW - Ingenieurbau KW - Verteiltes System KW - Planungsprozess KW - Modellierung KW - Mehragentensystem Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1481 ER - TY - JOUR A1 - Aziz, Zeeshan A1 - Anumba, Chimay A1 - Miles, John T1 - Towards a Semantic Grid Computing Platform for Disaster Management in Built Environment N2 - Current disaster management procedures rely primarily on heuristics which result in their strategies being very cautious and sub-optimum in terms of saving life, minimising damage and returning the building to its normal function. Also effective disaster management demands decentralized, dynamic, flexible, short term and across domain resource sharing, which is not well supported by existing distributing computing infrastructres. The paper proposes a conceptual framework for emergency management in the built environment, using Semantic Grid as an integrating platform for different technologies. The framework supports a distributed network of specialists in built environment, including structural engineers, building technologists, decision analysts etc. It brings together the necessary technology threads, including the Semantic Web (to provide a framework for shared definitions of terms, resources and relationships), Web Services (to provide dynamic discovery and integration) and Grid Computing (for enhanced computational power, high speed access, collaboration and security control) to support rapid formation of virtual teams for disaster management. The proposed framework also make an extensive use of modelling and simulation (both numerical and using visualisations), data mining (to find resources in legacy data sets) and visualisation. It also include a variety of hardware instruments with access to real time data. Furthermore the whole framework is centred on collaborative working by the virtual team. Although focus of this paper is on disaster management, many aspects of the discussed Grid and Visualisation technologies will be useful for any other forms of collaboration. Conclusions are drawn about the possible future impact on the built environment. KW - Mehragentensystem KW - Lernendes System KW - Katastrophenmanagement KW - Software Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2084 ER -