TY - THES A1 - Jenabidehkordi, Ali T1 - An Efficient Adaptive PD Formulation for Complex Microstructures N2 - The computational costs of newly developed numerical simulation play a critical role in their acceptance within both academic use and industrial employment. Normally, the refinement of a method in the area of interest reduces the computational cost. This is unfortunately not true for most nonlocal simulation, since refinement typically increases the size of the material point neighborhood. Reducing the discretization size while keep- ing the neighborhood size will often require extra consideration. Peridy- namic (PD) is a newly developed numerical method with nonlocal nature. Its straightforward integral form equation of motion allows simulating dy- namic problems without any extra consideration required. The formation of crack and its propagation is known as natural to peridynamic. This means that discontinuity is a result of the simulation and does not demand any post-processing. As with other nonlocal methods, PD is considered an expensive method. The refinement of the nodal spacing while keeping the neighborhood size (i.e., horizon radius) constant, emerges to several nonphysical phenomena. This research aims to reduce the peridynamic computational and imple- mentation costs. A novel refinement approach is introduced. The pro- posed approach takes advantage of the PD flexibility in choosing the shape of the horizon by introducing multiple domains (with no intersections) to the nodes of the refinement zone. It will be shown that no ghost forces will be created when changing the horizon sizes in both subdomains. The approach is applied to both bond-based and state-based peridynamic and verified for a simple wave propagation refinement problem illustrating the efficiency of the method. Further development of the method for higher dimensions proves to have a direct relationship with the mesh sensitivity of the PD. A method for solving the mesh sensitivity of the PD is intro- duced. The application of the method will be examined by solving a crack propagation problem similar to those reported in the literature. New software architecture is proposed considering both academic and in- dustrial use. The available simulation tools for employing PD will be collected, and their advantages and drawbacks will be addressed. The challenges of implementing any node base nonlocal methods while max- imizing the software flexibility to further development and modification will be discussed and addressed. A software named Relation-Based Sim- ulator (RBS) is developed for examining the proposed architecture. The exceptional capabilities of RBS will be explored by simulating three dis- tinguished models. RBS is available publicly and open to further develop- ment. The industrial acceptance of the RBS will be tested by targeting its performance on one Mac and two Linux distributions. KW - Peridynamik KW - Numerical Simulations KW - Peridynamics KW - Numerical Simulations Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20221124-47422 ER - TY - THES A1 - Jenabidehkordi, Ali T1 - An efficient adaptive PD formulation for complex microstructures N2 - The computational costs of newly developed numerical simulation play a critical role in their acceptance within both academic use and industrial employment. Normally, the refinement of a method in the area of interest reduces the computational cost. This is unfortunately not true for most nonlocal simulation, since refinement typically increases the size of the material point neighborhood. Reducing the discretization size while keep- ing the neighborhood size will often require extra consideration. Peridynamic (PD) is a newly developed numerical method with nonlocal nature. Its straightforward integral form equation of motion allows simulating dynamic problems without any extra consideration required. The formation of crack and its propagation is known as natural to peridynamic. This means that discontinuity is a result of the simulation and does not demand any post-processing. As with other nonlocal methods, PD is considered an expensive method. The refinement of the nodal spacing while keeping the neighborhood size (i.e., horizon radius) constant, emerges to several nonphysical phenomena. This research aims to reduce the peridynamic computational and imple- mentation costs. A novel refinement approach is introduced. The pro- posed approach takes advantage of the PD flexibility in choosing the shape of the horizon by introducing multiple domains (with no intersections) to the nodes of the refinement zone. It will be shown that no ghost forces will be created when changing the horizon sizes in both subdomains. The approach is applied to both bond-based and state-based peridynamic and verified for a simple wave propagation refinement problem illustrating the efficiency of the method. Further development of the method for higher dimensions proves to have a direct relationship with the mesh sensitivity of the PD. A method for solving the mesh sensitivity of the PD is intro- duced. The application of the method will be examined by solving a crack propagation problem similar to those reported in the literature. New software architecture is proposed considering both academic and in- dustrial use. The available simulation tools for employing PD will be collected, and their advantages and drawbacks will be addressed. The challenges of implementing any node base nonlocal methods while max- imizing the software flexibility to further development and modification will be discussed and addressed. A software named Relation-Based Sim- ulator (RBS) is developed for examining the proposed architecture. The exceptional capabilities of RBS will be explored by simulating three distinguished models. RBS is available publicly and open to further develop- ment. The industrial acceptance of the RBS will be tested by targeting its performance on one Mac and two Linux distributions. KW - Peridynamik KW - Peridynamics KW - Numerical Simulation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20221116-47389 UR - https://e-pub.uni-weimar.de/opus4/frontdoor/index/index/docId/4742 ER - TY - THES A1 - Zhang, Yongzheng T1 - A Nonlocal Operator Method for Quasi-static and Dynamic Fracture Modeling N2 - Material failure can be tackled by so-called nonlocal models, which introduce an intrinsic length scale into the formulation and, in the case of material failure, restore the well-posedness of the underlying boundary value problem or initial boundary value problem. Among nonlocal models, peridynamics (PD) has attracted a lot of attention as it allows the natural transition from continuum to discontinue and thus allows modeling of discrete cracks without the need to describe and track the crack topology, which has been a major obstacle in traditional discrete crack approaches. This is achieved by replacing the divergence of the Cauchy stress tensor through an integral over so-called bond forces, which account for the interaction of particles. A quasi-continuum approach is then used to calibrate the material parameters of the bond forces, i.e., equating the PD energy with the energy of a continuum. One major issue for the application of PD to general complex problems is that they are limited to fairly simple material behavior and pure mechanical problems based on explicit time integration. PD has been extended to other applications but losing simultaneously its simplicity and ease in modeling material failure. Furthermore, conventional PD suffers from instability and hourglass modes that require stabilization. It also requires the use of constant horizon sizes, which drastically reduces its computational efficiency. The latter issue was resolved by the so-called dual-horizon peridynamics (DH-PD) formulation and the introduction of the duality of horizons. Within the nonlocal operator method (NOM), the concept of nonlocality is further extended and can be considered a generalization of DH-PD. Combined with the energy functionals of various physical models, the nonlocal forms based on the dual-support concept can be derived. In addition, the variation of the energy functional allows implicit formulations of the nonlocal theory. While traditional integral equations are formulated in an integral domain, the dual-support approaches are based on dual integral domains. One prominent feature of NOM is its compatibility with variational and weighted residual methods. The NOM yields a direct numerical implementation based on the weighted residual method for many physical problems without the need for shape functions. Only the definition of the energy or boundary value problem is needed to drastically facilitate the implementation. The nonlocal operator plays an equivalent role to the derivatives of the shape functions in meshless methods and finite element methods (FEM). Based on the variational principle, the residual and the tangent stiffness matrix can be obtained with ease by a series of matrix multiplications. In addition, NOM can be used to derive many nonlocal models in strong form. The principal contributions of this dissertation are the implementation and application of NOM, and also the development of approaches for dealing with fractures within the NOM, mostly for dynamic fractures. The primary coverage and results of the dissertation are as follows: -The first/higher-order implicit NOM and explicit NOM, including a detailed description of the implementation, are presented. The NOM is based on so-called support, dual-support, nonlocal operators, and an operate energy functional ensuring stability. The nonlocal operator is a generalization of the conventional differential operators. Combining with the method of weighted residuals and variational principles, NOM establishes the residual and tangent stiffness matrix of operate energy functional through some simple matrix without the need of shape functions as in other classical computational methods such as FEM. NOM only requires the definition of the energy drastically simplifying its implementation. For the sake of conciseness, the implementation in this chapter is focused on linear elastic solids only, though the NOM can handle more complex nonlinear problems. An explicit nonlocal operator method for the dynamic analysis of elasticity solid problems is also presented. The explicit NOM avoids the calculation of the tangent stiffness matrix as in the implicit NOM model. The explicit scheme comprises the Verlet-velocity algorithm. The NOM can be very flexible and efficient for solving partial differential equations (PDEs). It's also quite easy for readers to use the NOM and extend it to solve other complicated physical phenomena described by one or a set of PDEs. Several numerical examples are presented to show the capabilities of this method. -A nonlocal operator method for the dynamic analysis of (thin) Kirchhoff plates is proposed. The nonlocal Hessian operator is derived from a second-order Taylor series expansion. NOM is higher-order continuous, which is exploited for thin plate analysis that requires $C^1$ continuity. The nonlocal dynamic governing formulation and operator energy functional for Kirchhoff plates are derived from a variational principle. The Verlet-velocity algorithm is used for time discretization. After confirming the accuracy of the nonlocal Hessian operator, several numerical examples are simulated by the nonlocal dynamic Kirchhoff plate formulation. -A nonlocal fracture modeling is developed and applied to the simulation of quasi-static and dynamic fractures using the NOM. The phase field's nonlocal weak and associated strong forms are derived from a variational principle. The NOM requires only the definition of energy. We present both a nonlocal implicit phase field model and a nonlocal explicit phase field model for fracture; the first approach is better suited for quasi-static fracture problems, while the key application of the latter one is dynamic fracture. To demonstrate the performance of the underlying approach, several benchmark examples for quasi-static and dynamic fracture are solved. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2022,9 KW - Variationsprinzip KW - Partial Differential Equations KW - Taylor Series Expansion KW - Peridynamics KW - Variational principle KW - Phase field method KW - Peridynamik KW - Phasenfeldmodell KW - Partielle Differentialgleichung KW - Nichtlokale Operatormethode Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20221026-47321 ER - TY - JOUR A1 - Ren, Huilong A1 - Zhuang, Xiaoying A1 - Oterkus, Erkan A1 - Zhu, Hehua A1 - Rabczuk, Timon T1 - Nonlocal strong forms of thin plate, gradient elasticity, magneto-electro-elasticity and phase-field fracture by nonlocal operator method JF - Engineering with Computers N2 - The derivation of nonlocal strong forms for many physical problems remains cumbersome in traditional methods. In this paper, we apply the variational principle/weighted residual method based on nonlocal operator method for the derivation of nonlocal forms for elasticity, thin plate, gradient elasticity, electro-magneto-elasticity and phase-field fracture method. The nonlocal governing equations are expressed as an integral form on support and dual-support. The first example shows that the nonlocal elasticity has the same form as dual-horizon non-ordinary state-based peridynamics. The derivation is simple and general and it can convert efficiently many local physical models into their corresponding nonlocal forms. In addition, a criterion based on the instability of the nonlocal gradient is proposed for the fracture modelling in linear elasticity. Several numerical examples are presented to validate nonlocal elasticity and the nonlocal thin plate. KW - Bruchmechanik KW - Elastizität KW - Peridynamik KW - energy form KW - weak form KW - peridynamics KW - variational principle KW - explicit time integration Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20211207-45388 UR - https://link.springer.com/article/10.1007/s00366-021-01502-8 VL - 2021 SP - 1 EP - 22 ER - TY - THES A1 - Ren, Huilong T1 - Dual-horizon peridynamics and Nonlocal operator method N2 - In the last two decades, Peridynamics (PD) attracts much attention in the field of fracture mechanics. One key feature of PD is the nonlocality, which is quite different from the ideas in conventional methods such as FEM and meshless method. However, conventional PD suffers from problems such as constant horizon, explicit algorithm, hourglass mode. In this thesis, by examining the nonlocality with scrutiny, we proposed several new concepts such as dual-horizon (DH) in PD, dual-support (DS) in smoothed particle hydrodynamics (SPH), nonlocal operators and operator energy functional. The conventional PD (SPH) is incorporated in the DH-PD (DS-SPH), which can adopt an inhomogeneous discretization and inhomogeneous support domains. The DH-PD (DS-SPH) can be viewed as some fundamental improvement on the conventional PD (SPH). Dual formulation of PD and SPH allows h-adaptivity while satisfying the conservations of linear momentum, angular momentum and energy. By developing the concept of nonlocality further, we introduced the nonlocal operator method as a generalization of DH-PD. Combined with energy functional of various physical models, the nonlocal forms based on dual-support concept are derived. In addition, the variation of the energy functional allows implicit formulation of the nonlocal theory. At last, we developed the higher order nonlocal operator method which is capable of solving higher order partial differential equations on arbitrary domain in higher dimensional space. Since the concepts are developed gradually, we described our findings chronologically. In chapter 2, we developed a DH-PD formulation that includes varying horizon sizes and solves the "ghost force" issue. The concept of dual-horizon considers the unbalanced interactions between the particles with different horizon sizes. The present formulation fulfills both the balances of linear momentum and angular momentum exactly with arbitrary particle discretization. All three peridynamic formulations, namely bond based, ordinary state based and non-ordinary state based peridynamics can be implemented within the DH-PD framework. A simple adaptive refinement procedure (h-adaptivity) is proposed reducing the computational cost. Both two- and three- dimensional examples including the Kalthoff-Winkler experiment and plate with branching cracks are tested to demonstrate the capability of the method. In chapter 3, a nonlocal operator method (NOM) based on the variational principle is proposed for the solution of waveguide problem in computational electromagnetic field. Common differential operators as well as the variational forms are defined within the context of nonlocal operators. The present nonlocal formulation allows the assembling of the tangent stiffness matrix with ease, which is necessary for the eigenvalue analysis of the waveguide problem. The present formulation is applied to solve 1D Schrodinger equation, 2D electrostatic problem and the differential electromagnetic vector wave equations based on electric fields. In chapter 4, a general nonlocal operator method is proposed which is applicable for solving partial differential equations (PDEs) of mechanical problems. The nonlocal operator can be regarded as the integral form, ``equivalent'' to the differential form in the sense of a nonlocal interaction model. The variation of a nonlocal operator plays an equivalent role as the derivatives of the shape functions in the meshless methods or those of the finite element method. Based on the variational principle, the residual and the tangent stiffness matrix can be obtained with ease. The nonlocal operator method is enhanced here also with an operator energy functional to satisfy the linear consistency of the field. A highlight of the present method is the functional derived based on the nonlocal operator can convert the construction of residual and stiffness matrix into a series of matrix multiplications using the predefined nonlocal operators. The nonlocal strong forms of different functionals can be obtained easily via the concept of support and dual-support. Several numerical examples of different types of PDEs are presented. In chapter 5, we extended the NOM to higher order scheme by using a higher order Taylor series expansion of the unknown field. Such a higher order scheme improves the original NOM in chapter 3 and chapter 4, which can only achieve one-order convergence. The higher order NOM obtains all partial derivatives with specified maximal order simultaneously without resorting to shape functions. The functional based on the nonlocal operators converts the construction of residual and stiffness matrix into a series of matrix multiplication on the nonlocal operator matrix. Several numerical examples solved by strong form or weak form are presented to show the capabilities of this method. In chapter 6, the NOM proposed as a particle-based method in chapter 3,4,5, has difficulty in imposing accurately the boundary conditions of various orders. In this paper, we converted the particle-based NOM into a scheme with interpolation property. The new scheme describes partial derivatives of various orders at a point by the nodes in the support and takes advantage of the background mesh for numerical integration. The boundary conditions are enforced via the modified variational principle. The particle-based NOM can be viewed a special case of NOM with interpolation property when nodal integration is used. The scheme based on numerical integration greatly improves the stability of the method, as a consequence, the operator energy functional in particle-based NOM is not required. We demonstrated the capabilities of current method by solving the gradient solid problems and comparing the numerical results with the available exact solutions. In chapter 7, we derived the DS-SPH in solid within the framework of variational principle. The tangent stiffness matrix of SPH can be obtained with ease, and can be served as the basis for the present implicit SPH. We proposed an hourglass energy functional, which allows the direct derivation of hourglass force and hourglass tangent stiffness matrix. The dual-support is {involved} in all derivations based on variational principles and is automatically satisfied in the assembling of stiffness matrix. The implementation of stiffness matrix comprises with two steps, the nodal assembly based on deformation gradient and global assembly on all nodes. Several numerical examples are presented to validate the method. KW - Peridynamik KW - Variational principle KW - weighted residual method KW - gradient elasticity KW - phase field fracture method KW - smoothed particle hydrodynamics KW - numerical methods KW - PDEs Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210412-44039 ER -