TY - THES A1 - Wendrich, Astrid T1 - Zerstörungsfreie Ortung von Anomalien in historischem Mauerwerk mit Radar und Ultraschall T1 - Non-destructive investigations of anomalies at historic masonry with radarand ultrasonic N2 - Für die Sanierung von Bauwerken werden meist Informationen über die innere Struktur und den Aufbau, Belastungszustände, Feuchte- und Salzgehalte benötigt. Die Untersuchung mit zerstörungsarmen und -freien Methoden minimieren die dazu nötigen Eingriffe. Ebenfalls bieten die ZfP-Verfahren die Möglichkeit, den Erfolg einer Maßnahme zu kontrollieren sowie Prozesse über einen langen Zeitraum zu beobachten (Monitoring). Die vorliegende Arbeit befasst sich mit der zerstörungsfreien Untersuchung von inneren Strukturen und des Aufbaus von Mauerwerk mittels Ultraschall und Radar. Der untersuchte Querschnitt wird tomografisch rekonstruiert. Diese Darstellungsart bietet den Vorteil der Tiefenbestimmung von Objekten und der besseren Visualisierung für Auftraggeber und/oder Laien. Es wurden die Laufzeiten der Longitudinalwellen rekonstruiert. Die Frequenzen der Ultraschalluntersuchungen lagen bei 25 kHz sowie 85 kHz und der Radaruntersuchungen bei 900 MHz sowie 1,5 GHz. Die Rekonstruktion erfolgte mit dem Tomografieprogramm “Geo-Tom“, welches auf der Grundlage des SIRT-Algorithmus arbeitet. Die untersuchten Querschnitte beinhalteten Anomalien bestehend aus Luft, Granit, Holz und Mörtel. Die Abmaße der Anomalien lagen zwischen 10-27 cm bezogen auf einen Querschnitt von 0,76 x 1,0 m. Eine Ortung der Anomalien war möglich, wenn diese eine Laufzeitveränderung von mindestens der Größe des Messfehlers bewirken. Die Größe dieser Laufzeitdifferenz ist abhängig von den Abmaßen der Anomalie und dem Kontrast der elektromagnetischen bzw. akustischen Eigenschaften zwischen Anomalie und umgebenden Material. Eine Aussage über die Größe der Anomalie ist möglich, jedoch kann auf die Form nur bedingt geschlussfolgert werden. Des Weiteren kann durch den Vergleich der beiden Verfahren ein Rückschluss auf die möglichen Materialien der Anomalie gezogen werden. N2 - For the reconstruction of historic buildings often information about the inner structure, load cases, moisture and salt contents is needed. The application of minor and non-destructive techniques can reduce the number of necessary investigations. Moreover those techniques allow controlling the success of repair interventions and enable long term observation of processes (monitoring). This thesis focusses on non-destructive investigations of the inner structure of masonry using radar and ultrasonic. The investigated cross section will be reconstructed with travel time tomography. This reconstruction technique provides the opportunity of detection of objects in the depth of the investigated structure and offers a better visualization of results. The frequencies of the ultrasonic waves were 25 kHz and 85 kHz. For the radar measurements frequencies of 900 MHz and 1.5 GHz had been used. The reconstruction had been performed with the tomographic program “GeoTom“ wich is based on the “SIRT“ inversion algorithm. The investigated objects include anomalies like voids or wood, stone and mortar inclusions. The sizes vary from 10 cm up to 27 cm related to a total size of the investigated cross section of 0.76 x 1.0 m. The detection of those anomalies was possible, if the travel time differences with or without anomaly were greater as the measuring error. The travel time depends on the size of the anomaly itself and on the contrast of properties between anomaly and surrounding material. It is possible to gain general information about the material properties and the size of the anomaly, but not about its shape. T3 - BAM-Dissertationsreihe - 47 KW - Laufzeit KW - Tomographie KW - Radar KW - Radar KW - Ultraschall KW - Mauerwerk KW - Zweischaliges Mauerwerk KW - zerstörungsfrei KW - non-destructive Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20090709-14795 SN - 978-3-9812910-1-8 ER - TY - THES A1 - Tatarin, René T1 - Charakterisieren struktureller Veränderungen in zementgebundenen Baustoffen durch akustische zerstörungsfreie Prüfverfahren N2 - Im Rahmen dieser Arbeit wird das Charakterisieren struktureller Veränderungen zementgebundener Baustoffe durch zwei auf dem Ultraschall-Transmissionsverfahren beruhenden Methoden der zerstörungsfreien Prüfung (ZfP) mit mechanischen Wellen vorgenommen. Zur kontinuierlichen Charakterisierung der Erstarrung und Erhärtung frischer zementgebundener Systeme wird ein auf Ultraschallsensoren für Longitudinal- und Scherwellen basierendes Messsystem in Kombination mit zugehörigen Verfahrensweisen zur Datenauswertung konzipiert, charakterisiert und angewandt. Gegenüber der bislang üblichen alleinigen Bewertung der Verfestigung anhand indirekter Ultraschallparameter wie Ausbreitungsgeschwindigkeit, Signalenergie oder Frequenzgehalt der Longitudinalwelle lässt sich damit eine direkte, sensible Erfassung der sich während der Strukturbildung entwickelnden dynamischen elastischen Eigenschaften auf der Basis primärer physikalischer Werkstoffparameter erreichen. Insbesondere Scherwellen und der dynamische Schubmodul sind geeignet, den graduellen Übergang zum Festkörper mit Überschreiten der Perkolationsschwelle sensibel und unabhängig vom Luftgehalt zu erfassen. Die zeitliche Entwicklung der dynamischen elastischen Eigenschaften, die Strukturbildungsraten sowie die daraus extrahierten diskreten Ergebnisparameter ermöglichen eine vergleichende quantitative Charakterisierung der Strukturbildung zementgebundener Baustoffe aus mechanischer Sicht. Dabei lassen sich typische, oft unvermeidbare Unterschiede in der Zusammensetzung der Versuchsmischungen berücksichtigen. Der Einsatz laserbasierter Methoden zur Anregung und Erfassung von mechanischen Wellen und deren Kombination zu Laser-Ultraschall zielt darauf ab, die mit der Anwendung des konventionellen Ultraschall-Transmissionsverfahrens verbundenen Nachteile zu eliminieren. Diese resultieren aus der Sensorgeometrie, der mechanischen Ankopplung und bei einer Vielzahl von Oberflächenpunkten aus einem hohen prüftechnischen Aufwand. Die laserbasierte, interferometrische Erfassung mechanischer Wellen ist gegenüber Ultraschallsensoren rauschbehaftet und vergleichsweise unsensibel. Als wesentliche Voraussetzung der scannenden Anwendung von Laser-Ultraschall auf zementgebundene Baustoffe erfolgen systematische experimentelle Untersuchungen zur laserinduzierten ablativen Anregung. Diese sollen zum Verständnis des Anregungsmechanismus unmittelbar auf den Oberflächen von zementgebundenen Baustoffen, Gesteinskörnungen und metallischen Werkstoffen beitragen, relevante Einflussfaktoren aus den charakteristischen Materialeigenschaften identifizieren, geeignete Prozessparameter gewinnen und die Verfahrensgrenzen aufzeigen. Unter Einsatz von Longitudinalwellen erfolgt die Anwendung von Laser-Ultraschall zur zeit- und ortsaufgelösten Charakterisierung der Strukturbildung und Homogenität frischer sowie erhärteter Proben zementgebundener Baustoffe. Während der Strukturbildung wird erstmals eine simultane berührungslose Erfassung von Longitudinal- und Scherwellen vorgenommen. Unter Anwendung von tomographischen Methoden (2D-Laufzeit¬tomo¬graphie) werden überlagerungsfreie Informationen zur räumlichen Verteilung struktureller Gefügeveränderungen anhand der longitudinalen Ausbreitungsgeschwindigkeit bzw. des relativen dynamischen Elastizitätsmoduls innerhalb von virtuellen Schnittebenen geschädigter Probekörper gewonnen. Als beton-schädigende Mechanismen werden exemplarisch der kombinierte Frost-Tausalz-Angriff sowie die Alkali-Kieselsäure-Reaktion (AKR) herangezogen. Die im Rahmen dieser Arbeit entwickelten Verfahren der zerstörungsfreien Prüfung bieten erweiterte Möglichkeiten zur Charakterisierung zementgebundener Baustoffe und deren strukturellen Veränderungen und lassen sich zielgerichtet in der Werkstoffentwicklung, bei der Qualitätssicherung sowie zur Analyse von Schadensprozessen und -ursachen einsetzen. N2 - In this research, structural changes of cement-based building materials are characterized using two ultrasonic transmission-based methods of non-destructive testing (NDT) with mechanical waves. For continuous characterization of setting and hardening of fresh cementitious materials a measurement system is designed, characterized and applied based on ultrasonic compressional and shear wave transducers in combination with associated data evaluation procedures. In contrast to common non-destructive testing of setting and hardening by means of solely indirect ultrasonic parameters such as pulse velocity, signal energy or frequency content of compressional waves, a direct sensitive recording of dynamic elastic properties can be achieved during the structure formation on the basis of primary physical material parameters. Especially, shear waves and the dynamic shear modulus are suitable to capture the gradual transition to a solid with exceeding percolation threshold in a sensitive manner and independent of air content. The development of dynamic elastic properties, the structure formation rates and the extracted discrete result parameters enable a comparative and quantitative analysis of the structural formation of fresh cementitious materials from a mechanical point of view. As an advantage, often unavoidable differences in the composition of test blends can be taken into account. The application of laser-based techniques for generation and detection of mechanical waves and their combination to laser-ultrasonics eliminates the disadvantages associated with the application of conventional ultrasonic through-transmission techniques. These result from sensor geometry, mechanical coupling and, in case of numerous surface points, due to a high inspection time and effort. Furthermore, the laser-based interferometric detection of mechanical waves is noisy and relatively insensitive compared to application of ultrasonic sensors. As an essential prerequisite, systematic experimental investigations of laser-induced ablative generation are carried out for the scanning application of laser-ultrasonics on cement-based building materials. These investigations contribute to the understanding of the excitation mechanism directly on the surfaces of concrete, natural aggregates and metallic targets and to the identification of relevant influencing factors from the characteristic material properties. By gathering optimized process parameters, the limitations of laser-ultrasonics to concrete are shown. Laser-ultrasonics is applied using compressional waves for time- and space-resolved characterization of the structure formation and homogeneity of fresh and hardened specimen of cement-based building materials. During the structure formation process, the simultaneous contactless acquisition of compressional and shear waves is carried out for the first time. With the implementation of tomographic methods (2D travel-time tomography) it is possible to obtain superposition-free information on the spatial distribution of microstructural changes by means of the longitudinal ultrasonic pulse velocity or the relative dynamic modulus of elasticity within virtual cross-sections of damaged specimens. The combined freeze-thaw de-icing salt attack as well as the alkali-silica reaction (ASR) are investigated as mechanisms of concrete damage. The methods of non-destructive testing developed within the scope of this study offer extended possibilities for the characterization of cement-based building materials and their structural changes and can be applied in a targeted manner in materials development, quality control and in analysis of damage processes and causes. KW - Beton KW - Hydratation KW - Ultraschall KW - Zerstörungsfreie Werkstoffprüfung KW - Lasertechnologie KW - Laser-Ultraschall KW - elastische Parameter KW - Tomographie KW - Strukturbildung KW - Dauerhaftigkeit Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220215-45920 SN - 978-3-7369-7575-0 PB - Cuvillier Verlag CY - Göttingen ER - TY - THES A1 - Remus, Ricardo T1 - Ultraschallgestützte Betonherstellung. Konzept für eine ressourcenschonende Betonproduktion N2 - Aktuell findet aufgrund gesellschaftspolitischer Forderungen in vielen Industriezweigen ein Umdenken in Richtung Effizienz und Ökologie aber auch Digitalisierung und Industrie 4.0 statt. In dieser Hinsicht steht die Bauindustrie, im Vergleich zu Industrien wie IT, Automobil- oder Maschinenbau, noch am Anfang. Dabei sind die Potentiale zur Einsparung und Optimierung gerade in der Bauindustrie aufgrund der großen Mengen an zu verarbeiteten Materialien besonders hoch. Die internationale Ressourcen- und Klimadebatte führt verstärkt dazu, dass auch in der Zement- und Betonherstellung neue Konzepte erstellt und geprüft werden. Einerseits erfolgt intensive Forschung und Entwicklung im Bereich alternativer, klimafreundlicher Zemente. Andererseits werden auch auf Seiten der Betonherstellung innovative materialsparende Konzepte geprüft, wie die aktuelle Entwicklung von 3D-Druck mit Beton zeigt. Aufgrund der hohen Anforderungen an Konstruktion, Qualität und Langlebigkeit von Bauwerken, besitzen Betonfertigteile oftmals Vorteile gegenüber Ortbeton. Die hohe Oberflächenqualität und Dauerhaftigkeit aber auch die Gleichmäßigkeit und witterungsunabhängige Herstellung sind Merkmale, die im Zusammenhang mit Betonfertigteilen immer wieder erwähnt werden. Dabei ist es essenziell, dass auch der Betonherstellungsprozess im Fertigteilwerk kritisch hinterfragt wird, damit eine effizientere und nachhaltigere Produktion von Betonfertigteilen möglich wird. Bei der Herstellung von Betonteilen im Fertigteilwerk liegt ein besonderer Fokus auf der Optimierung der Frühfestigkeitsentwicklung. Hohe Frühfestigkeiten sind Voraussetzung für einen hochfrequenten Schalungszyklus, was Arbeiten im 2- bzw. 3-Schichtbetrieb ermöglicht. Oft werden zur Sicherstellung hoher Frühfestigkeiten hochreaktive Zemente in Kombination mit hohen Zementgehalten im Beton und/oder einer Wärmebehandlung eingesetzt. Unter dieser Prämisse ist eine ökologisch nachhaltige Betonproduktion mit verminderter CO2 Bilanz nicht möglich. In der vorliegenden Arbeit wird ein neues Verfahren zur Beschleunigung von Beton eingeführt. Hierbei werden die Bestandteile Zement und Wasser (Zementsuspension) mit Ultraschall vorbehandelt. Ausgangspunkt der Arbeit sind vorangegangene Untersuchungen zum Einfluss von Ultraschall auf die Hydration von Zement bzw. dessen Hauptbestandteil Tricalciumsilikat (C3S), die im Rahmen dieser Arbeit weiter vertieft werden. Darüber hinaus wird die Produktion von Beton mit Ultraschall im Technikumsmaßstab betrachtet. Die so erlangten Erfahrungen dienten dazu, das Ultraschall-Betonmischsystem weiterzuentwickeln und erstmalig zur industriellen Betonproduktion zu nutzen. In der vorliegenden Arbeit werden die Auswirkungen von Ultraschall auf die Hydratation von C3S zunächst weitergehend und grundlegend untersucht. Dies erfolgte mittels Messung der elektrischen Leitfähigkeit, Analyse der Ionenkonzentration (ICP-OES), Thermoanalyse, Messung der BET-Oberfläche sowie einer optischen Auswertung mittels Rasterelektronenmikroskopie (REM). Der Fokus liegt auf den ersten Stunden der Hydratation, also der Zeit, die durch die Ultraschallbehandlung am stärksten beeinflusst wird. In den Untersuchungen zeigt sich, dass die Beschleunigungswirkung von Ultraschall in verdünnten C3S Suspensionen (w/f-Wert = 50) stark von der Portlanditkonzentration der Lösung abhängt. Je niedriger die Portlanditkonzentration, desto größer ist die Beschleunigung. Ergänzende Untersuchungen der Ionenkonzentration der Lösung sowie Untersuchungen am hydratisierten C3S zeigen, dass unmittelbar nach der Beschallung (nach ca. 15 Minuten Hydratation) erste Hydratphasen vorliegen. Die durch Ultraschall initiiere Beschleunigung ist in den ersten 24 Stunden am stärksten und klingt dann sukzessive ab. Die Untersuchungen schließen mit Experimenten an C3S-Pasten (w/f-Wert = 0,50), die die Beobachtungen an den verdünnten Suspensionen bestätigen und infolge der Beschallung ein früheres Auftreten und einen größeren Anteil an C-S-H Phasen zeigen. Es wird gefolgert, dass die unmittelbar infolge von Ultraschall erzeugten C-S-H Phasen als Kristallisationskeim während der folgenden Reaktion dienen und daher Ultraschall als in-situ Keimbildungstechnik angesehen werden kann. Optisch zeigt sich, dass die C-S-H Phasen der beschallten Pasten nicht nur viel früher auftreten, sondern kleiner sind und fein verteilt über die Oberfläche des C3S vorliegen. Auch dieser Effekt wird als vorteilhaft für den sich anschließenden regulären Strukturaufbau angesehen. Im nächsten Schritt wird daher der Untersuchungsfokus vom Modellsystem mit C3S auf Portlandzement erweitert. Hierbei wird der Frage nachgegangen, wie sich eine Änderung der Zusammensetzung der Zementsuspension (w/z-Wert, Fließmittelmenge) beziehungsweise eine Änderung des Ultraschallenergieeintrag auf die Fließeigenschaften und das Erhärtungsverhalten auswirken. Um den Einfluss verschiedener Faktoren gleichzeitig zu betrachten, werden mit Hilfe von statistischen Versuchsplänen Modelle erstellt, die das Verhalten der einzelnen Faktoren beschreiben. Zur Beschreibung der Fließeigenschaften wurde das Setzfließ- und Ausbreitmaß von Zementsuspensionen herangezogen. Die Beschleunigung der Erhärtung wurde mit Hilfe der Ermittlung des Zeitpunkts des normalen Erstarrens der Zementsuspension bestimmt. Die Ergebnisse dieser Untersuchungen zeigen deutlich, dass die Fließeigenschaften und der Erstarrungsbeginn nicht linear mit steigendem Ultraschall-Energieeintrag verändert werden. Es zeigt sich, dass es besonders bei den Verarbeitungseigenschaften der Portlandzementsuspensionen zur Ausbildung eines spezifischen Energieeintrages kommt, bis zu welchem das Setzfließ- und das Ausbreitmaß erhöht werden. Bei Überschreiten dieses Punktes, der als kritischer Energieeintrag definiert wurde, nimmt das Setzfließ- und Ausbreitmaß wieder ab. Das Auftreten dieses Punktes ist im besonderen Maße abhängig vom w/z-Wert. Mit sinkendem w/z-Wert wird der Energieeintrag, der eine Verbesserung der Fließeigenschaften hervorruft, reduziert. Bei sehr niedrigen w/z-Werten (< 0,35), kann keine Verbesserung mehr beobachtet werden. Wird Fließmittel vor der Beschallung zur Zementsuspension zugegeben, können die Eigenschaften der Zementsuspension maßgeblich beeinflusst werden. In beschallten Suspensionen mit Fließmittel, konnte in Abhängigkeit des Energieeintrages die fließmittelbedingte Verzögerung des Erstarrungsbeginns deutlich reduziert werden. Weiterhin zeigt sich, dass der Energieeintrag, der notwendig ist um den Erstarrungsbeginn um einen festen Betrag zu reduzieren, bei Suspensionen mit Fließmittel deutlich reduziert ist. Auf Grundlage der Beobachtungen an Zementsuspensionen wird der Einfluss von Ultraschall in einen dispergierenden und einen beschleunigenden Effekt unterteilt. Bei hohen w/z-Werten dominiert der dispergierende Einfluss von Ultraschall und der Erstarrungsbeginn wird moderat verkürzt. Bei niedrigeren w/z-Werten der Zementsuspension, dominiert der beschleunigende Effekt wobei kein oder sogar ein negativer Einfluss auf die Verarbeitungseigenschaften beobachtet werden kann. Im nächsten Schritt werden die Untersuchungen auf den Betonmaßstab mit Hilfe einer Technikumsanlage erweitert und der Einfluss eines zweistufigen Mischens (also dem Herstellen einer Zementsuspension im ersten Schritt und dem darauffolgenden Vermischen mit der Gesteinskörnung im zweiten Schritt) mit Ultraschall auf die Frisch- und Festbetoneigenschaften betrachtet. Durch die Anlagentechnik, die mit der Beschallung größerer Mengen Zementsuspension einhergeht, kommen weitere Einflussfaktoren auf die Zementsuspension hinzu (z. B. Pumpgeschwindigkeit, Temperatur, Druck). Im Rahmen der Untersuchungen wurde eine Betonrezeptur mit und ohne Ultraschall hergestellt und die Frisch- und Festbetoneigenschaften verglichen. Darüber hinaus wurde ein umfangreiches Untersuchungsprogramm zur Ermittlung wesentlicher Dauerhaftigkeitsparameter durchgeführt. Aufbauend auf den Erfahrungen mit der Technikumsanlage wurde das Ultraschall-Vormischsystem in mehreren Stufen weiterentwickelt und abschließend in einem Betonwerk zur Betonproduktion verwendet. Die Untersuchungen am Beton zeigen eine deutliche Steigerung der Frühdruckfestigkeiten des Portlandzementbetons. Hierbei kann die zum Entschalen von Betonbauteilen notwendige Druckfestigkeit von 15 MPa deutlich früher erreicht werden. Das Ausbreitmaß der Betone (w/z-Wert = 0,47) wird infolge der Beschallung leicht reduziert, was sich mit den Ergebnissen aus den Untersuchungen an reinen Zementsuspensionen deckt. Bei Applikation eines Überdruckes in der Beschallkammer oder einer Kühlung der Suspension während der Beschallung, kann das Ausbreitmaß leicht gesteigert werden. Allerdings werden die hohen Frühdruckfestigkeiten der ungekühlten beziehungsweise drucklosen Variante nicht mehr erreicht. In den Untersuchungen kann gezeigt werden, dass das Potential durch die Ultraschall-Beschleunigung genutzt werden kann, um entweder die Festigkeitsklasse des Zementes leitungsneutral zu reduzieren (von CEM I 52,5 R auf CEM I 42,5 R) oder eine 4-stündige Wärmebehandlung vollständig zu substituieren. Die Dauerhaftigkeit der Betone wird dabei nicht negativ beeinflusst. In den Untersuchungen zum Sulfat-, Karbonatisierung-, Chlorideindring- oder Frost/Tauwiderstand kann weder ein positiver noch ein negativer Einfluss durch die Beschallung abgeleitet werden. Ebenso kann in einer Untersuchung zur Alkali-Kieselsäure-Reaktion kein negativer Einfluss durch die Ultraschallbehandlung beobachtet werden. In den darauf aufbauenden Untersuchungen wird die Anlagentechnik weiterentwickelt, um die Ultraschallbehandlung stärker an eine reale Betonproduktion anzupassen. In der ersten Iterationsstufe wird das in den Betonuntersuchungen verwendete Anlagenkonzept 1 modifiziert (von der In-line-Beschallung zur Batch-Beschallung) und als Analgenkonzept 2 für weitere Untersuchungen genutzt. Hierbei wird eine neue Betonrezeptur mit höherem w/z-Wert (0,52) verwendet, wobei die Druckfestigkeiten ebenfalls deutlich gesteigert werden können. Im Gegensatz zum ersten Beton, wird das Ausbreitmaß dieser Betonzusammensetzung gesteigert, was zur Reduktion von Fließmittel genutzt wird. Dies deckt sich ebenfalls mit den Beobachtungen an reinen Portlandzementsuspensionen, wo eine deutliche Verbesserung der Fließfähigkeit bei höheren w/z-Werten beschrieben wird. Für diese Betonrezeptur wird ein Vergleich mit einem kommerziell erhältlichen Erhärtungsbeschleuniger (synthetische C-S-H-Keime) angestellt. Hierbei zeigt sich, dass die Beschleunigungswirkung beider Technologien vergleichbar ist. Eine Kombination beider Technologien führt zu einer weiteren deutlichen Steigerung der Frühfestigkeiten, so dass hier von einem synergistischen Effekt ausgegangen werden kann. In der letzten Iterationsstufe, dem Anlagenkonzept 3, wird beschrieben, wie das Mischsystem im Rahmen einer universitären Ausgründung signifikant weiterentwickelt wird und erstmals in einem Betonwerk zur Betonproduktion verwendet wird. Bei den Überlegungen zur Weiterentwicklung des Ultraschall-Mischsystems wird der Fokus auf die Praktikabilität gelegt und gezeigt, dass das ultraschallgestütze Mischsystem die Druckfestigkeitsentwicklung auch im Werksmaßstab deutlich beschleunigen kann. Damit ist die Voraussetzung für eine ökologisch nachhaltige Optimierung eines Fertigteilbetons unter realen Produktionsbedingungen geschaffen worden. N2 - In the past years efficiency and sustainability as well as digitalization has come into focus for many different industries due to environmental and cultural changes. Compared to industries like IT, automotive or machine manufacturing, the building industry is still at the very beginning. Although, due to the large quantities of materials processed, the potential for savings and optimization is especially high in the construction industry. The international discussion on resources and climate is increasingly leading to new concepts being developed and tested in cement and concrete production. On one hand, intensive research and development is taking place in the area of alternative, climate-friendly cements. On the other hand, innovative concepts, like for example 3D-printing, are being tested in concrete production. Due to the construction, quality and durability requirements of buildings, precast concrete elements often have advantages compared to ready-mixed concrete. The high surface quality, durability, as well as the uniformity and weather-independent production are advantages that are repeatedly mentioned when speaking about precast concrete elements. It is necessary though, to discuss the concrete production process in the precast plant to make an efficient and sustainable production of precast concrete elements possible. Precast concrete producers mainly focus on optimizing early strength development. Fast hardening concrete is required for the demolding cycle, to enable shift work in production. Often, to ensure high early strengths, highly reactive cements are used in combination with high cement contents in the concrete and/or heat treatment. This contradicts a sustainable concrete concept. In this thesis, a new method for mixing concrete is discussed. Here, the reactive components of the concrete, cement and water, are pre-treated with ultrasound. Previous investigations on the influence of ultrasound on C3S and cement are the starting point of this work. These are further investigated in as part of this work. Furthermore, the production of concrete with ultrasound is investigated in a pilot scale. The gained experiences were used to further develop the ultrasonic concrete mixing system. Finally, the application of this technology in industrial concrete production is discussed. In this work, the effects of ultrasound on the hydration of C3S are further investigated. For this purpose, the hydration of sonicated suspensions is monitored by measuring the electrical conductivity, analysing the ion concentration by means of ICP-OES, thermal analysis, measuring the BET surface and an optical evaluation by means of scanning electron microscopy (SEM). The focus is on the first hours of hydration. During this time the hydration is most strongly influenced by the ultrasound treatment. The investigations show that the acceleration effect in diluted suspensions (w/s value = 50) is strongly dependent on the portlandite concentration of the solution. The lower the portlandite concentration, the greater the acceleration. Supplementary investigations of the ion concentration of the solution as well as investigations on hydrated C3S show, that first hydrate phases are observable immediately after sonication. The acceleration induced by ultrasound is strongest within the first 24 hours, gradually decreasing beyond this time. The investigations are concluded with experiments on C3S pastes (w/f value = 0.50), which confirm the observations on the diluted suspensions and show an earlier appearance and a greater number of C-S-H phases as a result of sonication. Visually, the C-S-H phases of the sonicated pastes do not only appear much earlier, they are also smaller and finely distributed over the surface of the C3S. In the next step, the focus of the investigation is extended from the model system with C3S to Portland cement. The question to be discussed is how different compositions of the cement suspension (w/c-ratio, amount of superplasticiser) or a change in the ultrasonic energy input affects the flow properties and the hardening behaviour. To consider the influence of different factors simultaneously, models are developed with design of experiments (DoE), which describes the behavior of the individual factors. To describe the workability, the slump of cement suspensions was determined. The acceleration of setting was measured by determining the time of normal setting of the cement suspension. The results of these investigations clearly show that the flow properties and the set time do not change linearly with increasing energy input. It is shown that there is a threshold of the specific energy input up to which the slump is increased. When this point, which is defined as the critical energy input, is exceeded, the slump decreased. The occurrence of this point is particularly dependent on the w/c ratio. As the w/c ratio decreases, the energy input that causes an improvement in the flow properties is reduced. At very low w/c-values (< 0.35), no improvement can be observed. If superplasticiser is added to the cement suspension before sonication, the properties of the cement suspension can be significantly influenced. In sonicated suspensions with superplasticiser, the superplasticiser-induced delay of the set time could be significantly reduced depending on the energy input. Furthermore, the energy input required to reduce the time of solidification is significantly reduced in suspensions with superplasticiser. Based on the observations on cement suspensions, the influence of ultrasound is divided into a dispersing and an accelerating effect. At high w/c-values, the dispersing effect of ultrasound dominates, and the set time is moderately decreased. At lower w/c-values of the cement suspension, the accelerating effect dominates, whereas no or even a negative influence on the workability can be observed. In the next step, the investigations will be extended to the concrete scale with the help of a laboratory plant. Here, the influence of two-stage mixing with ultrasound on the fresh and hardened concrete properties will be discussed. Due to the system set up, which goes hand in hand with the sonication of larger quantities of cement suspension, added further influencing factors to the cement suspension (e.g., Pumping speed, temperature, pressure). As part of the investigations, a concrete composition was produced with as well as without ultrasonic premixing and the fresh and hardened concrete properties were compared. In addition, a comprehensive investigation programme was undertaken to determine essential durability parameters. Based on the experiences with the laboratory device, the ultrasonic premixing system was further developed in several stages and finally used in an industrial concrete plant for concrete production. The results of the concrete investigations examine a significant increase in the early compressive strengths of Portland cement concrete. Here, the compressive strength of 15 MPa, which is required for stripping of concrete components, can be achieved significantly earlier. The slump of the concretes (w/c-value = 0.47) is slightly decreased as a result of sonication, which is in accordance with the results of the investigations on cement suspensions. If an overpressure is applied in the sonication chamber or the suspension is cooled during sonication, the slump can be slightly increased. However, the high early compressive strengths of the non-cooled or non-pressured concrete are no longer achieved. the investigations show that the acceleration potential can be used to either reduce the strength class of the cement without performance loss (e. g. from CEM I 52.5 R to CEM I 42.5 R) or to completely substitute a 4-hour heat treatment. The durability of the concrete is not affected. In the investigations on sulphate, carbonation, chloride penetration or freeze/thaw resistance, neither a positive nor a negative influence can be derived from sonication. Likewise, in an investigation on alkali-silica reaction, no negative influence can be observed due to ultrasonic premixing. Based on these investigations, the ultrasound mixing technology will be further developed in order to decrease the gap between laboratory and industrial production. In the first iteration, the system concept 1 used in the concrete investigations will be modified and used subsequently as system concept 2 for further tests. Here, a new concrete composition with a higher w/c ratio (0.52) is used, through which the compressive strengths can also be significantly increased. In contrast to the first concrete, the slump of this concrete composition is increased, which is used to reduce superplasticiser. This is also in accordance with the observations on Portland cement suspensions, where a clear improvement of the flowability at higher w/c-values is described. For this concrete formulation, a comparison is made with a commercially available hardening accelerator (synthetic C-S-H-seeds). The results show that the acceleration effect of both technologies is comparable. A combination of both technologies leads to a further significant increase in early strength, so a synergistic effect can be assumed. The last iteration stage, the system concept 3, describes how the mixing system is significantly developed within a university spin-off and is used for the first time in a concrete plant for concrete production. The conceptual design of the ultrasonic mixing system for industrial application, focusses on the practicability.it is shown that the mixing system can significantly accelerate the compressive strength development, even in an industrial scale. These results paves the way for optimising precast concrete in terms of sustainability. KW - Beton KW - Beton KW - Nachhaltigkeit KW - Ultraschall Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230112-48919 ER -