TY - JOUR A1 - Achenbach, Marcus A1 - Lahmer, Tom A1 - Morgenthal, Guido T1 - Global Sensitivity Analysis of Reinforced Concrete Walls Subjected to Standard Fire - A Comparison of Methods JF - 14th International Probabilistic Workshop N2 - Global Sensitivity Analysis of Reinforced Concrete Walls Subjected to Standard Fire—A Comparison of Methods KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2017 SP - 97 EP - 106 ER - TY - JOUR A1 - Alalade, Muyiwa A1 - Nguyen-Tuan, Long A1 - Wuttke, Frank A1 - Lahmer, Tom T1 - Damage identification in gravity dams using dynamic coupled hydro-mechanical XFEM JF - International Journal of Mechanics and Materials in Design N2 - Damage identification in gravity dams using dynamic coupled hydro-mechanical XFEM. KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2017 U6 - http://dx.doi.org/10.25643/bauhaus-universitaet.3596 SP - 1 EP - 19 ER - TY - JOUR A1 - Amani, Jafar A1 - Bagherzadeh, Amir Saboor A1 - Rabczuk, Timon T1 - Error estimate and adaptive refinement in Mixed Discrete Least Squares Meshless method JF - Mathematical Problems in Engineering N2 - Error estimate and adaptive refinement in Mixed Discrete Least Squares Meshless method KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 ER - TY - JOUR A1 - Amiri, Fatemeh A1 - Millán, D. A1 - Shen, Y. A1 - Rabczuk, Timon A1 - Arroyo, M. T1 - Phase-field modeling of fracture in linear thin shells JF - Theoretical and Applied Fracture Mechanics N2 - Phase-field modeling of fracture in linear thin shells KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 102 EP - 109 ER - TY - JOUR A1 - Anitescu, Cosmin A1 - Jia, Yue A1 - Zhang, Yongjie A1 - Rabczuk, Timon T1 - An isogeometric collocation method using superconvergent points JF - Computer Methods in Applied Mechanics and Engineer-ing N2 - An isogeometric collocation method using superconvergent points KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 1073 EP - 1097 ER - TY - JOUR A1 - Arash, Behrouz A1 - Rabczuk, Timon A1 - Jiang, Jin-Wu T1 - Nanoresonators and their applications: a state of the art review JF - Applied Physics Reviews N2 - Nanoresonators and their applications: a state of the art review KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 ER - TY - JOUR A1 - Areias, Pedro A1 - Pinto da Costa, A. A1 - Rabczuk, Timon A1 - Queiros de Melo, F. J. M. A1 - Dias-da-Costa, D. T1 - An alternative formulation for quasi-static frictional and cohesive contact problems JF - Computational Mechanics N2 - An alternative formulation for quasi-static frictional and cohesive contact problems KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 807 EP - 824 ER - TY - JOUR A1 - Areias, Pedro A1 - Rabczuk, Timon T1 - Finite strain fracture of plates and shells with configurational forces and edge rotation JF - International Journal for Numerical Methods in Engineering N2 - Finite strain fracture of plates and shells with configurational forces and edge rotation KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 ER - TY - JOUR A1 - Areias, Pedro A1 - Rabczuk, Timon A1 - Barbosa, J.I. T1 - The extended unsymmetric frontal solution for multiple-point constraints JF - Engineering Computations N2 - The extended unsymmetric frontal solution for multiple-point constraints KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 ER - TY - JOUR A1 - Areias, Pedro A1 - Rabczuk, Timon A1 - Camanho, P.P. T1 - Finite strain fracture of 2D problems with injected anisotropic softening elements JF - Theoretical and Applied Fracture Mechanics N2 - Finite strain fracture of 2D problems with injected anisotropic softening elements KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 ER - TY - JOUR A1 - Areias, Pedro A1 - Rabczuk, Timon A1 - Cesar de Sa, J.M. A1 - Garcao, J.E. T1 - Finite strain quadrilateral shell using least-squares _t of relative Lagrangian in-plane strains JF - Finite Elements in Analysis and Design N2 - Finite strain quadrilateral shell using least-squares _t of relative Lagrangian in-plane strains KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 26 EP - 40 ER - TY - JOUR A1 - Areias, Pedro A1 - Rabczuk, Timon A1 - Cesar de Sa, J.M. A1 - Jorge, R.N. T1 - A semi-implicit _nite strain shell algorithm using in-plane strains based on least-squares JF - Computational Mechanics N2 - A semi-implicit _nite strain shell algorithm using in-plane strains based on least-squares KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 ER - TY - JOUR A1 - Areias, Pedro A1 - Rabczuk, Timon A1 - Dias-da-Costa, D. T1 - Assumed-metric spherically-interpolated quadrilateral shell element JF - Finite Elements in Analysis and Design N2 - Assumed-metric spherically-interpolated quadrilateral shell element KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 SP - 53 EP - 67 ER - TY - JOUR A1 - Areias, Pedro A1 - Rabczuk, Timon A1 - Dias-da-Costa, D. T1 - Asymmetric Shell Elements Based on a Corrected Updated-Lagrangian Approach JF - CMES: Computer Modeling in Engineering and Sciences N2 - Asymmetric Shell Elements Based on a Corrected Updated-Lagrangian Approach KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 ER - TY - JOUR A1 - Areias, Pedro A1 - Rabczuk, Timon A1 - Dias-da-Costa, D. A1 - Piresh, E.B. T1 - Implicit solutions with consistent additive and multiplicative components JF - Finite Elements in Analysis and Design N2 - This work describes an algorithm and corresponding software for incorporating general nonlinear multiple-point equality constraints in a implicit sparse direct solver. It is shown that direct addressing of sparse matrices is possible in general circumstances, circumventing the traditional linear or binary search for introducing (generalized) constituents to a sparse matrix. Nested and arbitrarily interconnected multiple-point constraints are introduced by processing of multiplicative constituents with a built-in topological ordering of the resulting directed graph. A classification of discretization methods is performed and some re-classified problems are described and solved under this proposed perspective. The dependence relations between solution methods, algorithms and constituents becomes apparent. Fracture algorithms can be naturally casted in this framework. Solutions based on control equations are also directly incorporated as equality constraints. We show that arbitrary constituents can be used as long as the resulting directed graph is acyclic. It is also shown that graph partitions and orderings should be performed in the innermost part of the algorithm, a fact with some peculiar consequences. The core of our implicit code is described, specifically new algorithms for direct access of sparse matrices (by means of the clique structure) and general constituent processing. It is demonstrated that the graph structure of the second derivatives of the equality constraints are cliques (or pseudo-elements) and are naturally included as such. A complete algorithm is presented which allows a complete automation of equality constraints, avoiding the need of pre-sorting. Verification applications in four distinct areas are shown: single and multiple rigid body dynamics, solution control and computational fracture. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.finel.2012.03.007 SP - 15 EP - 31 ER - TY - JOUR A1 - Areias, Pedro A1 - Rabczuk, Timon A1 - Queiros de Melo, F. J. M. A1 - Cesar de Sa, J.M. T1 - Coulomb frictional contact by explicit projection in the cone for _nite displacement quasi-static problems JF - Computational Mechanics N2 - Coulomb frictional contact by explicit projection in the cone for _nite displacement quasi-static problems KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 57 EP - 72 ER - TY - JOUR A1 - Bakar, I. A1 - Kramer, O. A1 - Bordas, Stéphane Pierre Alain A1 - Rabczuk, Timon T1 - Optimization of Elastic Properties and Weaving Patterns of Woven Composites JF - Composite Structures N2 - Optimization of Elastic Properties and Weaving Patterns of Woven Composites KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 SP - 575 EP - 591 ER - TY - JOUR A1 - Beex, L.A.A. A1 - Kerfriden, Pierre A1 - Rabczuk, Timon A1 - Bordas, Stéphane Pierre Alain T1 - Quasicontinuum-based multiscale approaches for plate-like beam lattices experiencing in-plane and out-of-plane deformation JF - Computer Methods in Applied Mechanics and Engineering N2 - Quasicontinuum-based multiscale approaches for plate-like beam lattices experiencing in-plane and out-of-plane deformation KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 ER - TY - JOUR A1 - Ben, S. A1 - Zhao, Jun-Hua A1 - Zhang, Yancheng A1 - Rabczuk, Timon T1 - The interface strength and debonding for composite structures: review and recent developments JF - Composite Structures N2 - The interface strength and debonding for composite structures: review and recent developments KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 ER - TY - JOUR A1 - Brehm, Maik A1 - Zabel, Volkmar A1 - Bucher, Christian T1 - An automatic mode pairing strategy using an enhanced modal assurance citerion based on modal strain energies JF - Journal of Sound and Vibration N2 - In the context of finite element model updating using output-only vibration test data, natural frequencies and mode shapes are used as validation criteria. Consequently, the correct pairing of experimentally obtained and numerically derived natural frequencies and mode shapes is important. In many cases, only limited spatial information is available and noise is present in the measurements. Therefore, the automatic selection of the most likely numerical mode shape corresponding to a particular experimentally identified mode shape can be a difficult task. The most common criterion for indicating corresponding mode shapes is the modal assurance criterion. Unfortunately, this criterion fails in certain cases and is not reliable for automatic approaches. In this paper, the purely mathematical modal assurance criterion will be enhanced by additional physical information from the numerical model in terms of modal strain energies. A numerical example and a benchmark study with experimental data are presented to show the advantages of the proposed energy-based criterion in comparison to the traditional modal assurance criterion. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2010 U6 - http://dx.doi.org/10.1016/j.jsv.2010.07.006 SP - 5375 EP - 5392 ER - TY - JOUR A1 - Brehm, Maik A1 - Zabel, Volkmar A1 - Bucher, Christian T1 - Optimal reference sensor positions for applications in model updating using output-only vibration test data based on random excitation: Part 2 - improved search strategy and experimental case study JF - Mechanical Systems and Signal Processing N2 - Optimal reference sensor positions for applications in model updating using output-only vibration test data based on random excitation: Part 2 - improved search strategy and experimental case study KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2011 ER - TY - JOUR A1 - Bruhin, R. A1 - Stock, U.A. A1 - Drücker, J.-P. A1 - Azhari, T. A1 - Wippermann, J. A1 - Albes, J.M. A1 - Hintze, D. A1 - Eckardt, Stefan A1 - Könke, Carsten A1 - Wahlers, T. T1 - Numerical simulation techniques to study the structural response of the human chest following median sternotomy JF - The Annals of Thoracic Surgery N2 - Numerical simulation techniques to study the structural response of the human chest following median sternotomy KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2005 SP - 623 EP - 630 ER - TY - JOUR A1 - Bucher, Christian A1 - Ebert, Matthias T1 - Nichtlineare Berechnung von Stahlflanschverbindungen mit gemessenen Imperfektionen JF - Stahlbau N2 - Nichtlineare Berechnung von Stahlflanschverbindungen mit gemessenen Imperfektionen KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2002 SP - 516 EP - 522 ER - TY - JOUR A1 - Bucher, Christian A1 - Frangopol, D.M. T1 - Optimization of lifetime maintenance strategies for deteriorting structures considering probabilities of violating safety, condition, and cost thresholds JF - Probabilistic Engineering Mechanics N2 - Optimization of lifetime maintenance strategies for deteriorting structures considering probabilities of violating safety, condition, and cost thresholds KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2006 SP - 1 EP - 8 ER - TY - JOUR A1 - Bucher, Christian A1 - Most, Thomas T1 - A comparison of approximate response functions in structural reliability analysis JF - Probabilistic Engineering Mechanics N2 - A comparison of approximate response functions in structural reliability analysis KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2008 SP - 154 EP - 163 ER - TY - JOUR A1 - Bucher, Christian A1 - Pham, Hoang Anh T1 - On model updating of existing structures utilizing measured dynamic responses JF - Structure and Infrastructure Engineering N2 - On model updating of existing structures utilizing measured dynamic responses KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2005 SP - 135 EP - 143 ER - TY - THES A1 - Budarapu, Pattabhi Ramaiah T1 - Adaptive multiscale methods for fracture T1 - Adaptive Multiskalen-Methoden zur Modellierung von Materialversagen N2 - One major research focus in the Material Science and Engineering Community in the past decade has been to obtain a more fundamental understanding on the phenomenon 'material failure'. Such an understanding is critical for engineers and scientists developing new materials with higher strength and toughness, developing robust designs against failure, or for those concerned with an accurate estimate of a component's design life. Defects like cracks and dislocations evolve at nano scales and influence the macroscopic properties such as strength, toughness and ductility of a material. In engineering applications, the global response of the system is often governed by the behaviour at the smaller length scales. Hence, the sub-scale behaviour must be computed accurately for good predictions of the full scale behaviour. Molecular Dynamics (MD) simulations promise to reveal the fundamental mechanics of material failure by modeling the atom to atom interactions. Since the atomistic dimensions are of the order of Angstroms ( A), approximately 85 billion atoms are required to model a 1 micro- m^3 volume of Copper. Therefore, pure atomistic models are prohibitively expensive with everyday engineering computations involving macroscopic cracks and shear bands, which are much larger than the atomistic length and time scales. To reduce the computational effort, multiscale methods are required, which are able to couple a continuum description of the structure with an atomistic description. In such paradigms, cracks and dislocations are explicitly modeled at the atomistic scale, whilst a self-consistent continuum model elsewhere. Many multiscale methods for fracture are developed for "fictitious" materials based on "simple" potentials such as the Lennard-Jones potential. Moreover, multiscale methods for evolving cracks are rare. Efficient methods to coarse grain the fine scale defects are missing. However, the existing multiscale methods for fracture do not adaptively adjust the fine scale domain as the crack propagates. Most methods, therefore only "enlarge" the fine scale domain and therefore drastically increase computational cost. Adaptive adjustment requires the fine scale domain to be refined and coarsened. One of the major difficulties in multiscale methods for fracture is to up-scale fracture related material information from the fine scale to the coarse scale, in particular for complex crack problems. Most of the existing approaches therefore were applied to examples with comparatively few macroscopic cracks. Key contributions The bridging scale method is enhanced using the phantom node method so that cracks can be modeled at the coarse scale. To ensure self-consistency in the bulk, a virtual atom cluster is devised providing the response of the intact material at the coarse scale. A molecular statics model is employed in the fine scale where crack propagation is modeled by naturally breaking the bonds. The fine scale and coarse scale models are coupled by enforcing the displacement boundary conditions on the ghost atoms. An energy criterion is used to detect the crack tip location. Adaptive refinement and coarsening schemes are developed and implemented during the crack propagation. The results were observed to be in excellent agreement with the pure atomistic simulations. The developed multiscale method is one of the first adaptive multiscale method for fracture. A robust and simple three dimensional coarse graining technique to convert a given atomistic region into an equivalent coarse region, in the context of multiscale fracture has been developed. The developed method is the first of its kind. The developed coarse graining technique can be applied to identify and upscale the defects like: cracks, dislocations and shear bands. The current method has been applied to estimate the equivalent coarse scale models of several complex fracture patterns arrived from the pure atomistic simulations. The upscaled fracture pattern agree well with the actual fracture pattern. The error in the potential energy of the pure atomistic and the coarse grained model was observed to be acceptable. A first novel meshless adaptive multiscale method for fracture has been developed. The phantom node method is replaced by a meshless differential reproducing kernel particle method. The differential reproducing kernel particle method is comparatively more expensive but allows for a more "natural" coupling between the two scales due to the meshless interpolation functions. The higher order continuity is also beneficial. The centro symmetry parameter is used to detect the crack tip location. The developed multiscale method is employed to study the complex crack propagation. Results based on the meshless adaptive multiscale method were observed to be in excellent agreement with the pure atomistic simulations. The developed multiscale methods are applied to study the fracture in practical materials like Graphene and Graphene on Silicon surface. The bond stretching and the bond reorientation were observed to be the net mechanisms of the crack growth in Graphene. The influence of time step on the crack propagation was studied using two different time steps. Pure atomistic simulations of fracture in Graphene on Silicon surface are presented. Details of the three dimensional multiscale method to study the fracture in Graphene on Silicon surface are discussed. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2015,1 KW - Material KW - Strukturmechanik KW - Materialversagen KW - material failure Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20150507-23918 ER - TY - JOUR A1 - Budarapu, Pattabhi Ramaiah A1 - Gracie, Robert A1 - Bordas, Stéphane Pierre Alain A1 - Rabczuk, Timon T1 - An adaptive multiscale method for quasi-static crack growth JF - Computational Mechanics N2 - This paper proposes an adaptive atomistic- continuum numerical method for quasi-static crack growth. The phantom node method is used to model the crack in the continuum region and a molecular statics model is used near the crack tip. To ensure self-consistency in the bulk, a virtual atom cluster is used to model the material of the coarse scale. The coupling between the coarse scale and fine scale is realized through ghost atoms. The ghost atom positions are interpolated from the coarse scale solution and enforced as boundary conditions on the fine scale. The fine scale region is adaptively enlarged as the crack propagates and the region behind the crack tip is adaptively coarsened. An energy criterion is used to detect the crack tip location. The triangular lattice in the fine scale region corresponds to the lattice structure of the (111) plane of an FCC crystal. The Lennard-Jones potential is used to model the atom–atom interactions. The method is implemented in two dimensions. The results are compared to pure atomistic simulations; they show excellent agreement. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 U6 - http://dx.doi.org/10.1007/s00466-013-0952-6 SP - 1129 EP - 1148 ER - TY - JOUR A1 - Budarapu, Pattabhi Ramaiah A1 - Gracie, Robert A1 - Yang, Shih-Wei A1 - Zhuang, Xiaoying A1 - Rabczuk, Timon T1 - Efficient Coarse Graining in Multiscale Modeling of Fracture JF - Theoretical and Applied Fracture Mechanics N2 - Efficient Coarse Graining in Multiscale Modeling of Fracture KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 126 EP - 143 ER - TY - JOUR A1 - Budarapu, Pattabhi Ramaiah A1 - Narayana, T.S.S. A1 - Rammohan, B. A1 - Rabczuk, Timon T1 - Directionality of sound radiation from rectangular panels JF - Applied Acoustics N2 - Directionality of sound radiation from rectangular panels KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 128 EP - 140 ER - TY - JOUR A1 - Chau-Dinh, T. A1 - Zi, Goangseup A1 - Lee, P.S. A1 - Song, Jeong-Hoon A1 - Rabczuk, Timon T1 - Phantom-node method for shell models with arbitrary cracks JF - Computers & Structures N2 - A phantom-node method is developed for three-node shell elements to describe cracks. This method can treat arbitrary cracks independently of the mesh. The crack may cut elements completely or partially. Elements are overlapped on the position of the crack, and they are partially integrated to implement the discontinuous displacement across the crack. To consider the element containing a crack tip, a new kinematical relation between the overlapped elements is developed. There is no enrichment function for the discontinuous displacement field. Several numerical examples are presented to illustrate the proposed method. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.compstruc.2011.10.021 ER - TY - JOUR A1 - Chen, Lei A1 - Nguyen-Thanh, Nhon A1 - Nguyen-Xuan, Hung A1 - Rabczuk, Timon A1 - Bordas, Stéphane Pierre Alain A1 - Limbert, Georges T1 - Explicit finite deformation analysis of isogeometric membranes JF - Computer Methods in Applied Mechanics and Engineering N2 - Explicit finite deformation analysis of isogeometric membranes KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 104 EP - 130 ER - TY - JOUR A1 - Chen, Lei A1 - Rabczuk, Timon A1 - Liu, G.R. A1 - Zeng, K.Y. A1 - Kerfriden, Pierre A1 - Bordas, Stéphane Pierre Alain T1 - Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth JF - Computer Methods in Applied Mechanics and Engineering N2 - This paper presents a strain smoothing procedure for the extended finite element method (XFEM). The resulting “edge-based” smoothed extended finite element method (ESm-XFEM) is tailored to linear elastic fracture mechanics and, in this context, to outperform the standard XFEM. In the XFEM, the displacement-based approximation is enriched by the Heaviside and asymptotic crack tip functions using the framework of partition of unity. This eliminates the need for the mesh alignment with the crack and re-meshing, as the crack evolves. Edge-based smoothing (ES) relies on a generalized smoothing operation over smoothing domains associated with edges of simplex meshes, and produces a softening effect leading to a close-to-exact stiffness, “super-convergence” and “ultra-accurate” solutions. The present method takes advantage of both the ES-FEM and the XFEM. Thanks to the use of strain smoothing, the subdivision of elements intersected by discontinuities and of integrating the (singular) derivatives of the approximation functions is suppressed via transforming interior integration into boundary integration. Numerical examples show that the proposed method improves significantly the accuracy of stress intensity factors and achieves a near optimal convergence rate in the energy norm even without geometrical enrichment or blending correction. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.cma.2011.08.013 ER - TY - JOUR A1 - Döring, R. A1 - Hoffmeyer, J. A1 - Seeger, T. A1 - Vormwald, Michael T1 - A plasticity model for calculating stress–strain sequences under multiaxial nonproportional cyclic loading JF - Computational Materials Science N2 - A plasticity model for calculating stress–strain sequences under multiaxial nonproportional cyclic loading KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2003 SP - 587 EP - 596 ER - TY - JOUR A1 - Döring, R. A1 - Hoffmeyer, J. A1 - Seeger, T. A1 - Vormwald, Michael T1 - Verformungsverhalten und rechnerische Abschätzung der Ermüdungslebensdauer metallischer Werkstoffe unter mehrachsig nichtproportionaler Beanspruchung JF - Materialwissenschaft und Werkstofftechnik N2 - Verformungsverhalten und rechnerische Abschätzung der Ermüdungslebensdauer metallischer Werkstoffe unter mehrachsig nichtproportionaler Beanspruchung KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2002 SP - 280 EP - 288 ER - TY - JOUR A1 - Eckardt, Stefan A1 - Könke, Carsten T1 - Adaptive damage simulation of concrete using heterogeneous multiscale models JF - Journal of Algorithms & Computational Technology N2 - Adaptive damage simulation of concrete using heterogeneous multiscale models KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2008 SP - 275 EP - 297 ER - TY - JOUR A1 - Ghasemi, Hamid A1 - Brighenti, Roberto A1 - Zhuang, Xiaoying A1 - Muthu, Jacob A1 - Rabczuk, Timon T1 - Optimum fiber content and distribution in fiber-reinforced solids using a reliability and NURBS based sequential optimization approach JF - Structural and Multidisciplinary Optimization N2 - Optimum _ber content and distribution in _ber-reinforced solids using a reliability and NURBS based sequential optimization approach KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 99 EP - 112 ER - TY - JOUR A1 - Ghasemi, Hamid A1 - Brighenti, Roberto A1 - Zhuang, Xiaoying A1 - Muthu, Jacob A1 - Rabczuk, Timon T1 - Optimization of fiber distribution in fiber reinforced composite by using NURBS functions JF - Computational Materials Science N2 - Optimization of fiber distribution in fiber reinforced composite by using NURBS functions KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 463 EP - 473 ER - TY - JOUR A1 - Ghasemi, Hamid A1 - Brighenti, Roberto A1 - Zhuang, Xiaoying A1 - Muthu, Jacob A1 - Rabczuk, Timon T1 - Sequential reliability based optimization of fiber content and dispersion in fiber reinforced composite by using NURBS finite elements JF - Structural and Multidisciplinary Optimization N2 - Sequential reliability based optimization of fiber content and dispersion in fiber reinforced composite by using NURBS finite elements KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 ER - TY - JOUR A1 - Ghasemi, Hamid A1 - Kerfriden, Pierre A1 - Bordas, Stéphane Pierre Alain A1 - Muthu, Jacob A1 - Zi, Goangseup A1 - Rabczuk, Timon T1 - Interfacial shear stress optimization in sandwich beams with polymeric core using nonuniform distribution of reinforcing ingredients JF - Composite Structures N2 - Interfacial shear stress optimization in sandwich beams with polymeric core using nonuniform distribution of reinforcing ingredients KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 221 EP - 230 ER - TY - JOUR A1 - Ghasemi, Hamid A1 - Rafiee, Roham A1 - Zhuang, Xiaoying A1 - Muthu, Jacob A1 - Rabczuk, Timon T1 - Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling JF - Computational Materials Science N2 - Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 295 EP - 305 ER - TY - JOUR A1 - Ghorashi, Seyed Shahram A1 - Lahmer, Tom A1 - Bagherzadeh, Amir Saboor A1 - Zi, Goangseup A1 - Rabczuk, Timon T1 - A stochastic computational method based on goal-oriented error estimation for heterogeneous geological materials JF - Engineering Geology N2 - A stochastic computational method based on goal-oriented error estimation for heterogeneous geological materials KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2016 ER - TY - JOUR A1 - Ghorashi, Seyed Shahram A1 - Valizadeh, Navid A1 - Mohammadi, S. A1 - Rabczuk, Timon T1 - T-spline based XIGA for Fracture Analysis of Orthotropic Media JF - Computers & Structures N2 - T-spline based XIGA for Fracture Analysis of Orthotropic Media KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 138 EP - 146 ER - TY - JOUR A1 - Göbel, Luise A1 - Lahmer, Tom A1 - Osburg, Andrea T1 - Uncertainty analysis in multiscale modeling of concrete based on continuum micromechanics JF - European Journal of Mechanics-A/Solids N2 - Uncertainty analysis in multiscale modeling of concrete based on continuum micromechanics KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2017 ER - TY - JOUR A1 - Hamdia, Khader A1 - Lahmer, Tom A1 - Nguyen-Thoi, T. A1 - Rabczuk, Timon T1 - Predicting The Fracture Toughness of PNCs: A Stochastic Approach Based on ANN and ANFIS JF - Computational Materials Science N2 - Predicting The Fracture Toughness of PNCs: A Stochastic Approach Based on ANN and ANFIS KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2015 SP - 304 EP - 313 ER - TY - JOUR A1 - Hauck, A. A1 - Lahmer, Tom A1 - Kaltenbacher, Manfred T1 - Enhanced homogenization technique for magnetomechanical systems using the generalized finite element method JF - COMPEL: The international journal for computation and mathematics in electrical and electronic engineering N2 - Enhanced homogenization technique for magnetomechanical systems using the generalized finite element method KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2009 SP - 935 EP - 947 ER - TY - JOUR A1 - Higuchi, Shoko A1 - Macke, M. T1 - Cost-benefit based optimization of maintenance interventions for deteriorating structures JF - Structural Engineering/Earthquake Engineering N2 - Cost-benefit based optimization of maintenance interventions for deteriorating structures KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2007 SP - 131 EP - 147 ER - TY - JOUR A1 - Higuchi, Shoko A1 - Macke, M. T1 - Cost-benefit based optimization of maintenance interventions for deteriorating structures JF - Doboku Gakkai Ronbunshuu A N2 - Cost-benefit based optimization of maintenance interventions for deteriorating structures KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2007 SP - 727 EP - 743 ER - TY - JOUR A1 - Higuchi, Shoko A1 - Macke, M. T1 - Cost-benefit analysis for the optimal rehabilitation of deteriorating structures JF - Structural Safety N2 - Cost-benefit analysis for the optimal rehabilitation of deteriorating structures KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2008 SP - 291 EP - 306 ER - TY - JOUR A1 - Hoffmeyer, J. A1 - Döring, R. A1 - Vormwald, Michael T1 - Kurzrisswachstum bei mehrachsig nichtproportionaler Beanspruchung JF - Materialwissenschaft und Werkstofftechnik N2 - Kurzrisswachstum bei mehrachsig nichtproportionaler Beanspruchung KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2001 SP - 329 EP - 336 ER -