TY - JOUR A1 - Ataollahi Oshkour, Azim A1 - Talebi, Hossein A1 - Seyed Shirazi, Seyed Farid A1 - Bayat, Mehdi A1 - Yau, Yat Huang A1 - Tarlochan, Faris A1 - Abu Osman, Noor Azuan T1 - Comparison of various functionally graded femoral prostheses by finite element analysis JF - Scientific World Journal N2 - This study is focused on finite element analysis of a model comprising femur into which a femoral component of a total hip replacement was implanted. The considered prosthesis is fabricated from a functionally graded material (FGM) comprising a layer of a titanium alloy bonded to a layer of hydroxyapatite. The elastic modulus of the FGM was adjusted in the radial, longitudinal, and longitudinal-radial directions by altering the volume fraction gradient exponent. Four cases were studied, involving two different methods of anchoring the prosthesis to the spongy bone and two cases of applied loading. The results revealed that the FG prostheses provoked more SED to the bone. The FG prostheses carried less stress, while more stress was induced to the bone and cement. Meanwhile, less shear interface stress was stimulated to the prosthesis-bone interface in the noncemented FG prostheses. The cement-bone interface carried more stress compared to the prosthesis-cement interface. Stair climbing induced more harmful effects to the implanted femur components compared to the normal walking by causing more stress. Therefore, stress shielding, developed stresses, and interface stresses in the THR components could be adjusted through the controlling stiffness of the FG prosthesis by managing volume fraction gradient exponent. KW - Finite-Elemente-Methode KW - Hüftgelenk KW - Funktioneller Gradientenwerkstoff Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170413-31194 ER - TY - JOUR A1 - Banihani, Suleiman A1 - Rabczuk, Timon A1 - Almomani, Thakir T1 - POD for real-time simulation of hyperelastic soft biological tissue using the point collocation method of finite spheres JF - Mathematical Problems in Engineering N2 - The point collocation method of finite spheres (PCMFS) is used to model the hyperelastic response of soft biological tissue in real time within the framework of virtual surgery simulation. The proper orthogonal decomposition (POD) model order reduction (MOR) technique was used to achieve reduced-order model of the problem, minimizing computational cost. The PCMFS is a physics-based meshfree numerical technique for real-time simulation of surgical procedures where the approximation functions are applied directly on the strong form of the boundary value problem without the need for integration, increasing computational efficiency. Since computational speed has a significant role in simulation of surgical procedures, the proposed technique was able to model realistic nonlinear behavior of organs in real time. Numerical results are shown to demonstrate the effectiveness of the new methodology through a comparison between full and reduced analyses for several nonlinear problems. It is shown that the proposed technique was able to achieve good agreement with the full model; moreover, the computational and data storage costs were significantly reduced. KW - Chirurgie KW - Finite-Elemente-Methode Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170413-31203 ER - TY - JOUR A1 - Galffy, Mozes A1 - Wellmann Jelic, Andres A1 - Hartmann, Dietrich T1 - Lifetime-oriented modelling of vortex-induced across-wind vibrations on bridge tie rods N2 - The influence of vortex-induces vibrations on vertical tie rods has been proved as a determinant load factor in the lifetime-oriented dimensioning of arched steel bridges. Particularly, the welded connection plates between the suspenders and the arches often exhibit cracks induced primarily rods. In this context, the synchronization of the vortex-shedding to the rod motion in a critical wind velocity range, the so-called lock-in effect, is of essential interest. KW - Finite-Elemente-Methode KW - Physikalisches Verfahren KW - Brückenbau KW - Schwingung Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2536 ER - TY - JOUR A1 - Ganev, T. A1 - Marinov, M. T1 - Towards Optimal Designing of thin elastic Plates with a specific free Oscillations Frequency N2 - Thin elastic plates are the basic constructional elements and are very often subjected to dynamic effects especially in the machine-building structures. Their saving design of resonance conditions of operation is an extremely complicated task which cannot be solved analytically. In the present report an efficient and sufficiently general method for optimal design of thin plates is worked out on the basis of energy resonance method of Wilder, the method of the finite elements for dynamic research and the methods of parameter optimization. By means of these methods various limitations and requirements put by the designer to the plates can be taken into account. A programme module for numerical investigation of the weight variation of the plate depending on the taken variable of the designed thickness at different supporting conditions is developed. The reasons for the considerable quantity and quality difference between the obtained optimal designs are also analysed. KW - Platte KW - Optimierung KW - Freie Schwingung KW - Finite-Elemente-Methode Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-5375 ER - TY - JOUR A1 - Ibanez, Stalin A1 - Kraus, Matthias T1 - A Numerical Approach for Plastic Cross Cross-Sectional Analyses of Steel Members JF - ce/papers N2 - Global structural analyses in civil engineering are usually performed considering linear-elastic material behavior. However, for steel structures, a certain degree of plasticization depending on the member classification may be considered. Corresponding plastic analyses taking material nonlinearities into account are effectively realized using numerical methods. Frequently applied finite elements of two and three-dimensional models evaluate the plasticity at defined nodes using a yield surface, i.e. by a yield condition, hardening rule, and flow rule. Corresponding calculations are connected to a large numerical as well as time-consuming effort and they do not rely on the theoretical background of beam theory, to which the regulations of standards mainly correspond. For that reason, methods using beam elements (one-dimensional) combined with cross-sectional analyses are commonly applied for steel members in terms of plastic zones theories. In these approaches, plasticization is in general assessed by means of axial stress only. In this paper, more precise numerical representation of the combined stress states, i.e. axial and shear stresses, is presented and results of the proposed approach are validated and discussed. KW - Stahlkonstruktion KW - Plastizität KW - Strukturanalyse KW - Stahlbauteil KW - Axialspannung KW - Finite-Elemente-Methode Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220112-45622 UR - https://onlinelibrary.wiley.com/doi/full/10.1002/cepa.1527 VL - 2021 IS - Volume 4, issue 2-4 SP - 2098 EP - 2106 PB - Ernst & Sohn, a Wiley brand CY - Berlin ER - TY - JOUR A1 - Kaapke, Kai A1 - Milbradt, Peter T1 - Voronoi-based finite volume method for transport problems N2 - Transport problems, as, for instance, the transport of sediment in hydraulic engineering and the transport of harmful substances through porous media, play an important role in many fields of civil engineering. Other examples include the dissipation of heat or sound as well as the simulation of traffic with macroscopic models. The contribution explains the analysis of the applicability of Voronoi-based finite volume methods for the approximation of solutions of transport problems. A special concern is the discretisation of the transport equation. Current limitations of the method as well as ideas for stabilisation are explained with examples. KW - Finite-Elemente-Methode KW - Physikalisches Verfahren KW - Transport Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2558 ER - TY - JOUR A1 - Kaklauskas, Gintaris A1 - Cervenka, Vladimir A1 - Cervenka, Jan T1 - Deflection Calculation of RC Beams: Finite Element Software versus Design Code Methods N2 - The paper investigates accuracy of deflection predictions made by the finite element package ATENA and design code methods ACI and EC2. Deflections have been calculated for a large number of experimental reinforced concrete beams reported by three investigators. Statistical parameters have been established for each of the technique at different load levels, separately for the beams with small and moderate reinforcement ratio. KW - Finite-Elemente-Methode KW - Physikalisches Verfahren KW - Balken Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2498 ER - TY - JOUR A1 - Kashiyama, Kazuo A1 - Hamada, Hidetaka A1 - Taniguchi, Takeo T1 - Large Scale Finite Element Simulation and Modeling Using GIS/CAD for Environmental Flows in Urban Area N2 - A large-scale computer modeling and simulation method is presented for environmental flows in urban area. Several GIS and CAD data were used for the preparation of shape model and an automatic mesh generation method based on Delaunay method was developed. Parallel finite element method based on domain decomposition method was employed for the numerical simulation of natural phenomena. The present method was applied to the simulation of flood flow and wind flow in urban area. The present method is shown to be a useful planning and design tool for the natural disasters and the change of environments. KW - Geoinformationssystem KW - Finite-Elemente-Methode KW - Stadtplanung Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2675 ER - TY - JOUR A1 - Ke, Chen A1 - Jian Ming, Lu T1 - Study of Analysis System for Bridge Test N2 - Analysis System for Bridge Test (Chinese name abbr.: QLJC) is an application software specially designed for bridge test to analyze the static and dynamic character of bridge structures, calculate efficiency ratio of load test, pick up the results of observation points and so on. In this paper, research content, system design, calculation theory, characteristics and practical application of QLJC is introduced in detail. KW - Finite-Elemente-Methode KW - Physikalisches Verfahren KW - Brückenbau KW - Straßenbrücke Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2547 ER - TY - JOUR A1 - Kraus, Matthias A1 - Crişan, Nicolae-Andrei A1 - Wittor, Björn T1 - Stability Study of Cantilever-Beams – Numerical Analysis and Analytical Calculation (LTB) JF - ce/papers N2 - According to Eurocode, the computation of bending strength for steel cantilever beams is a straightforward process. The approach is based on an Ayrton-Perry formula adaptation of buckling curves for steel members in compression, which involves the computation of an elastic critical buckling load for considering the instability. NCCI documents offer a simplified formula to determine the critical bending moment for cantilevers beams with symmetric cross-section. Besides the NCCI recommendations, other approaches, e.g. research literature or Finite-Element-Analysis, may be employed to determine critical buckling loads. However, in certain cases they render different results. Present paper summarizes and compares the abovementioned analytical and numerical approaches for determining critical loads and it exemplarily analyses corresponding cantilever beam capacities using numerical approaches based on plastic zones theory (GMNIA). KW - Träger KW - Stahl KW - Biegefestigkeit KW - Finite-Elemente-Methode KW - Stahlträger KW - Knicklast KW - Freiträgerkapazität KW - Eurocode Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220112-45637 UR - https://onlinelibrary.wiley.com/doi/full/10.1002/cepa.1539 VL - 2021 IS - Volume 4, issue 2-4 SP - 2199 EP - 2206 PB - Ernst & Sohn, a Wiley brand CY - Berlin ER - TY - JOUR A1 - Kwak, Hyo-Gyoung A1 - Kim, Jin-Kook T1 - Efficient Shoring System in RC Frame Structures N2 - In this paper, systematic analyses for the shoring systems installed to support the applied loads during construction are performed on the basis of the numerical approach. On the basis of a rigorous time-dependent analysis, structural behaviors of reinforced concrete (RC) frame structures according to the changes in design variables such as the types of shoring systems, shore stiffness and shore spacing are analyzed and discussed. The time-dependent deformations of concrete such as creep and shrinkage and construction sequences of frame structures are also taken into account to minimize the structural instability and to reach to an improved design of shoring system because these effects may increase the axial forces delivered to the shores. In advance, the influence of the column shortening effect, generally mentioned in a tall building structure, is analyzed. From many parametric studies, it has been finally concluded that the most effective shoring system in RC frame structures is 2S1R (two shores and one reshore) regardless of the changes in design variables. KW - Finite-Elemente-Methode KW - Physikalisches Verfahren KW - Skelettbau KW - Construction Sequence KW - Shoring System KW - Shore Stiffness KW - Shore Spacing Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2511 ER - TY - JOUR A1 - Lahmer, Tom T1 - FEM-Based determination of real and complex elastic, dielectric, and piezoelectric moduli in piezoceramic materials JF - IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control N2 - We propose an enhanced iterative scheme for the precise reconstruction of piezoelectric material parameters from electric impedance and mechanical displacement measurements. It is based on finite-element simulations of the full three-dimensional piezoelectric equations, combined with an inexact Newton or nonlinear Landweber iterative inversion scheme. We apply our method to two piezoelectric materials and test its performance. For the first material, the manufacturer provides a full data set; for the second one, no material data set is available. For both cases, our inverse scheme, using electric impedance measurements as input data, performs well. KW - Finite-Elemente-Methode KW - Piezoelectric materials KW - Dielectric materials KW - Computational modeling KW - Frequency KW - Finite element methods KW - Manufacturing KW - Impedance measurement KW - Partial differential equations KW - Resonance KW - Resonanz Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20171030-36083 ER - TY - JOUR A1 - Lee, Kangkun A1 - Lee, Kijang T1 - Additional bending moment for shear-lag phenomenon in tube structures N2 - Framed-tube system with multiple internal tubes is analysed using an orthotropic box beam analogy approach in which each tube is individually modelled by a box beam that accounts for the flexural and shear deformations, as well as the shear-lag effects. A simple numerical modeling technique is proposed for estimating the shear-lag phenomenon in tube structures with multiple internal tubes. The proposed method idealizes the framed-tube structures with multiple internal tubes as equivalent multiple tubes, each composed of four equivalent orthotropic plate panels. The numerical analysis is based on the minimum potential energy principle in conjunction with the variational approach. The shear-lag phenomenon of such structures is studied taking into account the additional bending moments in the tubes. A detailed work is carried out through the numerical analysis of the additional bending moment. The moment factor is further introduced to identify the shear lag phenomenon along with the additional moment. KW - Finite-Elemente-Methode KW - Physikalisches Verfahren KW - Hochhaus Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2472 ER - TY - JOUR A1 - Legatiuk, Dmitrii A1 - Weisz-Patrault, Daniel T1 - Coupling of Complex Function Theory and Finite Element Method for Crack Propagation Through Energetic Formulation: Conformal Mapping Approach and Reduction to a Riemann–Hilbert Problem JF - Computational Methods and Function Theory N2 - In this paper we present a theoretical background for a coupled analytical–numerical approach to model a crack propagation process in two-dimensional bounded domains. The goal of the coupled analytical–numerical approach is to obtain the correct solution behaviour near the crack tip by help of the analytical solution constructed by using tools of complex function theory and couple it continuously with the finite element solution in the region far from the singularity. In this way, crack propagation could be modelled without using remeshing. Possible directions of crack growth can be calculated through the minimization of the total energy composed of the potential energy and the dissipated energy based on the energy release rate. Within this setting, an analytical solution of a mixed boundary value problem based on complex analysis and conformal mapping techniques is presented in a circular region containing an arbitrary crack path. More precisely, the linear elastic problem is transformed into a Riemann–Hilbert problem in the unit disk for holomorphic functions. Utilising advantages of the analytical solution in the region near the crack tip, the total energy could be evaluated within short computation times for various crack kink angles and lengths leading to a potentially efficient way of computing the minimization procedure. To this end, the paper presents a general strategy of the new coupled approach for crack propagation modelling. Additionally, we also discuss obstacles in the way of practical realisation of this strategy. KW - Angewandte Mathematik KW - Finite-Elemente-Methode KW - Rissausbreitung KW - Modellierung KW - Bruchmechanik KW - fracture mechanics KW - crack propagation KW - coupling KW - energetic approach Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210805-44763 UR - https://link.springer.com/article/10.1007/s40315-021-00403-7 VL - 2021 SP - 1 EP - 23 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Lämmer, Lutz A1 - Burghardt, Michael A1 - Meißner, Udo F. T1 - Parallele Netzgenerierung N2 - Bei der Berechnung von statischen oder dynamischen Problemen mit Hilfe der Methode der Finiten Elemente ist eine Diskretisierung des zu berechnenden Gebietes notwendig. Bei einer sinnvollen Modellierung des Gebietes ist die Elementgröße meist nicht konstant, sondern ist an kritischen Stellen kleiner. Die Vorgaben hierfür können einerseits aus Erfahrungen des Anwenders, andererseits aus einer Fehlerabschätzung einer vorangegangenen FE-Berechnung resultieren [5]. Soll die FE-Berechnung auf einem Parallelrechner geschehen, ist eine Partitionierung des Gebietes, d.h. eine Zuordnung der Elemente zu den Prozessoren, notwendig. Bei dem hier beschriebenen Ansatz werden nun im Gegensatz zu den üblichen Verfahren erst die Eingangsdaten für den Netzgenerator umgewandelt und dann das Elementnetz direkt auf dem Parallelrecher gleichzeitig auf allen Prozessoren erzeugt. Eine Aufteilung der Elemente auf die Prozessoren entsteht als Nebenprodukt der Netzaufteilung. Die entstehenden Teilgebietsgrenzen werden geometrisch minimiert. Die Lastbalance der Netzaufteilung sowie der FE-Rechnung wird durch ein annähernd gleiche Anzahl der Elemente je Partition gewährleistet. Als Eingabedaten wird eine Beschreibung des Gebietes durch Polygonzüge, sowie einer Netzdichtefunktion, z.B. durch Punkte mit Angaben über die angestrebte Elementgröße, benötigt. KW - Finite-Elemente-Methode KW - Gittererzeugung Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-5315 ER - TY - JOUR A1 - Melnikov, B. E. A1 - Semenov, Artem T1 - Application of Multimodel Method of Elasto-Plastic Analysis for the Multilevel Computation of Structures N2 - Creation of hierarchical sequence of the plastic and viscoplastic models according to different levels of structure approximations is considered. Developed strategy of multimodel analysis, which consists of creation of the inelastic models library, determination of selection criteria system and caring out of multivariant sequential clarifying computations, is described. Application of the multimodel approach in numerical computations has demonstrated possibility of reliable prediction of stress-strain response under wide variety of combined nonproportional loading. KW - Finite-Elemente-Methode KW - Physikalisches Verfahren KW - Elastoplastizität Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2487 ER - TY - JOUR A1 - Milbradt, Peter A1 - Schierbaum, Jochen A1 - Schwöppe, Axel T1 - Finite Cell-Elements of Higher Order N2 - The method of the finite elements is an adaptable numerical procedure for interpolation as well as for the numerical approximation of solutions of partial differential equations. The basis of these procedure is the formulation of suitable finite elements and element decompositions of the solution space. Classical finite elements are based on triangles or quadrangles in the two-dimensional space and tetrahedron or hexahedron in the threedimensional space. The use of arbitrary-dimensional convex and non-convex polyhedrons as the geometrical basis of finite elements increases the flexibility of generating finite element decompositions substantially and is sometimes the only way to get a clear decomposition... KW - Finite-Elemente-Methode KW - Physikalisches Verfahren Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2524 ER - TY - JOUR A1 - Mironov, Vadim A1 - Pahl, Peter Jan T1 - A Prismatic Finite Element for Accurate Arch Dam Analysis N2 - The displacements and stresses in arch dams and their abutments are frequently determined with 20-node brick elements. The elements are distorted near the contact plane between the wall and the abutment. A cantilever beam testbed has been developed to investigate the consequences of this distortion. It is shown that the deterioration of the accuracy in the computed stresses is significant. A compatible 18-node wedge element with linear stress variation is developed as an alternative to the brick element. The shape of this element type is readily adapted to the shape of the contact plane. It is shown that the accuracy of the computed stresses in the vicinity of the contact plane is improved significantly by the use of wedge elements. KW - Finite-Elemente-Methode KW - Physikalisches Verfahren KW - Dammbau Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2467 ER - TY - JOUR A1 - Mortazavi, Bohayra A1 - Pereira, Luiz Felipe C. A1 - Jiang, Jin-Wu A1 - Rabczuk, Timon T1 - Modelling heat conduction in polycrystalline hexagonal boron-nitride films JF - Scientific Reports N2 - We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. KW - Wärmeleitfähigkeit KW - Bornitrid KW - Finite-Elemente-Methode Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170425-31534 ER - TY - JOUR A1 - Most, Thomas A1 - Eckardt, Stefan T1 - Application of a hybrid parallelization technique to accelerate the numerical simulation of nonlinear mechanical problems N2 - This paper presents the combination of two different parallelization environments, OpenMP and MPI, in one numerical simulation tool. The computation of the system matrices and vectors is parallelized with OpenMP and the solution of the system of equations is done with the MPIbased solver MUMPS. The efficiency of both algorithms is shown on several linear and nonlinear examples using the Finite Element Method and a meshless discretization technique. KW - Framework KW - API KW - Parallelverarbeitung KW - Finite-Elemente-Methode Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2599 ER - TY - JOUR A1 - Noh, Jung-Hwi A1 - Park, Jong-Heon T1 - A Calculation of Initial Cable Force for Ko-Ha Grand Bridge N2 - The primary objective of initial shape analysis of a cable stayed bridge is to calculate initial installation cable tension forces and to evaluate fabrication camber of main span and pylon providing the final longitudinal profile of the bridge at the end of construction. In addition, the initial cable forces depending on the alternation of the bridge’s shape can be obtained from the analysis, and will be used to provide construction safety during construction. In this research, we conducted numerical experiments for initial shape of Ko-ha bridge, which will be constructed in the near future, using three different typical methods such as continuous beam method, linear truss method, and IIMF (Introducing Initial Member Force) method KW - Finite-Elemente-Methode KW - Physikalisches Verfahren KW - Hängebrücke KW - cable stayed bridge KW - cable force KW - initial shape KW - initial equilibrium state Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2459 ER - TY - JOUR A1 - Pick, Tobias A1 - Heimsund, Bjoern-Ove A1 - Milbradt, Peter T1 - Development and Analysis of Sparse Matrix Concepts for Finite Element Approximation on general Cells N2 - In engineering and computing, the finite element approximation is one of the most well-known computational solution techniques. It is a great tool to find solutions for mechanic, fluid mechanic and ecological problems. Whoever works with the finite element method will need to solve a large system of linear equations. There are different ways to find a solution. One way is to use a matrix decomposition technique such as LU or QR. The other possibility is to use an iterative solution algorithm like Conjugate Gradients, Gauß-Seidel, Multigrid Methods, etc. This paper will focus on iterative solvers and the needed storage techniques... KW - Finite-Elemente-Methode KW - Physikalisches Verfahren KW - Bandmatrix Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2500 ER - TY - JOUR A1 - Reichert, Ina A1 - Olney, Peter A1 - Lahmer, Tom T1 - Combined approach for optimal sensor placement and experimental verification in the context of tower-like structures JF - Journal of Civil Structural Health Monitoring N2 - When it comes to monitoring of huge structures, main issues are limited time, high costs and how to deal with the big amount of data. In order to reduce and manage them, respectively, methods from the field of optimal design of experiments are useful and supportive. Having optimal experimental designs at hand before conducting any measurements is leading to a highly informative measurement concept, where the sensor positions are optimized according to minimal errors in the structures’ models. For the reduction of computational time a combined approach using Fisher Information Matrix and mean-squared error in a two-step procedure is proposed under the consideration of different error types. The error descriptions contain random/aleatoric and systematic/epistemic portions. Applying this combined approach on a finite element model using artificial acceleration time measurement data with artificially added errors leads to the optimized sensor positions. These findings are compared to results from laboratory experiments on the modeled structure, which is a tower-like structure represented by a hollow pipe as the cantilever beam. Conclusively, the combined approach is leading to a sound experimental design that leads to a good estimate of the structure’s behavior and model parameters without the need of preliminary measurements for model updating. KW - Strukturmechanik KW - Finite-Elemente-Methode KW - tower-like structures KW - experimental validation KW - mean-squared error KW - fisher-information matrix Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210804-44701 UR - https://link.springer.com/article/10.1007/s13349-020-00448-7 VL - 2021 IS - volume 11 SP - 223 EP - 234 PB - Heidelberg CY - Springer ER - TY - JOUR A1 - Talebi, Hossein A1 - Zi, Goangseup A1 - Silani, Mohammad A1 - Samaniego, Esteban A1 - Rabczuk, Timon T1 - A simple circular cell method for multilevel finite element analysis JF - Journal of Applied Mathematics N2 - A simple multiscale analysis framework for heterogeneous solids based on a computational homogenization technique is presented. The macroscopic strain is linked kinematically to the boundary displacement of a circular or spherical representative volume which contains the microscopic information of the material. The macroscopic stress is obtained from the energy principle between the macroscopic scale and the microscopic scale. This new method is applied to several standard examples to show its accuracy and consistency of the method proposed. KW - Finite-Elemente-Methode KW - Feststoff Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170426-31639 ER - TY - JOUR A1 - Tolok, V. A. A1 - Tolok, A. V. A1 - Gomenyuk, S. I. T1 - The instrumental System of Mechanics Problems Analysis of the deformed Solid Body N2 - In the abstract proposed is the Instrumental System of mechanics problems analysis of the deformed solid body. It supplies the researcher with the possibility to describe the input data on the object under analyses and the problem scheme based upon the variational principles within one task. The particular feature of System is possibility to describe the information concerning the object of any geometrical shape and the computation sheme according to the program defined for purpose. The Methods allow to compute the tasks with indefinite functional and indefinite geometry of the object (or the set of objects). The System provides the possibility to compute the tasks with indefinite sheme based upon the Finite Element Method (FEM). The restrictions of the System usage are therefore determined by the restrictions of the FEM itself. It contrast to other known programms using FEM (ANSYS, LS-DYNA and etc) described system possesses more universality in defining input data and choosing computational scheme. Builtin is an original Subsytem of Numerical Result Analuses. It possesses the possibility to visualise all numerical results, build the epures of the unknown variables, etc. The Subsystem is approved while solving two- and three-dimensional problems of Elasticiti and Plasticity, under the conditions of Geometrical Unlinearity. Discused are Contact Problems of Statics and Dynamics. KW - Festkörpermechanik KW - Finite-Elemente-Methode Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-5361 ER - TY - JOUR A1 - Vu-Bac, N. A1 - Nguyen-Xuan, Hung A1 - Chen, Lei A1 - Lee, C.K. A1 - Zi, Goangseup A1 - Zhuang, Xiaoying A1 - Liu, G.R. A1 - Rabczuk, Timon T1 - A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics JF - Journal of Applied Mathematics N2 - This paper presents a novel numerical procedure based on the combination of an edge-based smoothed finite element (ES-FEM) with a phantom-node method for 2D linear elastic fracture mechanics. In the standard phantom-node method, the cracks are formulated by adding phantom nodes, and the cracked element is replaced by two new superimposed elements. This approach is quite simple to implement into existing explicit finite element programs. The shape functions associated with discontinuous elements are similar to those of the standard finite elements, which leads to certain simplification with implementing in the existing codes. The phantom-node method allows modeling discontinuities at an arbitrary location in the mesh. The ES-FEM model owns a close-to-exact stiffness that is much softer than lower-order finite element methods (FEM). Taking advantage of both the ES-FEM and the phantom-node method, we introduce an edge-based strain smoothing technique for the phantom-node method. Numerical results show that the proposed method achieves high accuracy compared with the extended finite element method (XFEM) and other reference solutions. KW - Finite-Elemente-Methode KW - Steifigkeit KW - Bruchmechanik KW - Riss Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170426-31676 ER - TY - JOUR A1 - Êirinhevsky, V. V. A1 - Dîkhnyak, B. M. A1 - Êirichevsky, R. V. A1 - Êîzub, Y. G. T1 - Determination of the Temperature of Dissipative Warming and Parameters of Fracture in Elastomers with using of Singular Finite Elements N2 - For modeling of singular fields of stresses and deformations in elasters with a crack is offered to use of three-dimesional a special finite element. Weak compessible of elasters is taken into account on the basis of threefold approximation of fields of displacements, deformations and function of volume change. At intensive cyclic loading of the elastomer constructions with a crack it is necessary to take into account warming and large deformations at the crack top. The stress-deformed state elasters with a crack is determined from the decision of a nonlinear problem by a modified method Newton-Kantorovich. Account stress intensity factors for a rectangular plate with a various arrangement of a through crack is executed. Process of development of a surface crack and dissipative warming in prismatic a element of shift is investigated. KW - Elastomer KW - Temperatur KW - Finite-Elemente-Methode Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-5471 ER -