TY - CHAP A1 - Kohler, Niklaus A1 - Bodin, Olivier T1 - Dealing with sensitivity and uncertainty analysis in integrated buildung LCA model : Dealing with Uncertainty in Life Cyle Analysis of Building Model by Using Experiment Design Methods N2 - Building design, realization, operation and refurbishment have to take into account the environmental impacts as well as the resulting costs over a long period of time. LCA methods had to be developed for buildings because of their complexity, their long life duration and through a large number of actors who are involved. This was realized by integrating life cycle analysis, life cycle costing and building product models in integrated LCA models. However the use of such models leads to difficulties. The principal ones are the uncertainty treatment in LCA models and the lack of experience of practitioners who are not LCA specialists. Answers to these problems are the management of uncertainty and the development of simplified models for building design, construction and operation. This can be achieved with the mean of experimental plans or Monte Carlo simulation. The paper will focus on how these techniques can be used, what are their possibilities and disadvantages, particularly concerning the development of simplified models. KW - Bauwerk KW - Mathematisches Modell KW - Lebensdauer KW - Unsicherheit KW - Monte-Carlo-Simulation Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-3220 ER - TY - CHAP A1 - Konrad, Martin A1 - Chudoba, Rostislav A1 - Butenweg, Christoph T1 - Textile Reinforced Concrete Part II: Multi-Level Modeling Concept N2 - The development of a consistent material model for textile reinforced concrete requires the formulation and calibration of several sub-models on different resolution scales. Each of these models represents the material structure at the corresponding scale. While the models at the micro-level are able to capture the fundamental failure and damage mechanisms of the material components (e.g. filament rupture and debonding from the matrix) their computational costs limit their application to the small size representative unit cells of the material structure. On the other hand, the macro-level models provide a sufficient performance at the expense of limited range of applicability. Due to the complex structuring of the textile reinforced concrete at several levels (filament - yarn - textile - matrix) it is a non-trivial task to develop a multiscale model from scratch. It is rather more effective to develop a set of conceptually related sub-models for each structural level covering the selected phenomena of the material behavior. The homogenized effective material properties obtained at the lower level may be verified and validated using experiments and models at the higher level(s). In this paper the development of a consistent material model for textile reinforced concrete is presented. Load carrying and failure mechanisms at the micro, meso and macro scales are described and models with the focus on the specified scales are introduced. The models currently being developed in the framework of the collaborative research center are classified and evaluated with respect to the failure mechanisms being captured. The micromechanical modeling of the yarn and bonding behavior is discussed in detail and the correspondence with the experiments focused on the selected failure and interaction mechanisms is shown. The example of modeling the bond layer demonstrates the application of the presented strategy. KW - Beton KW - Bewehrung KW - Textilfaser KW - Mathematisches Modell Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-3230 ER - TY - CHAP A1 - Brackx, Fred A1 - De Schepper, Hennie A1 - Lagae, Johan T1 - Mathematical model of the laminated frame for a dome N2 - On the basis of the little material available (an architecture plan and some photographs) a computer model is developed for a bullet shaped dome, part of the Belgian Congo pavilion, created by the architect Henry Lacoste for the International Colonial Exhibition of 1931 in Paris. The ingenious and elegant wooden skeleton of the dome is approximated in two stages. The first approximation focusses on the curves traced on the dome by the wooden laminae, which appear to be loxodromes, cutting the meridians by a constant angle. In a second approximation the very specific joints of the laminae are taken into consideration. The resulting computer image shows an astonishing resemblance with the photographs. Finally, the shapes and dimensions of all laminae are calculated, enabling a possible reconstruction of the dome. KW - Kuppel KW - Sandwichbauweise KW - Mathematisches Modell Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2803 ER -