TY - JOUR A1 - Ren, Huilong A1 - Zhuang, Xiaoying A1 - Oterkus, Erkan A1 - Zhu, Hehua A1 - Rabczuk, Timon T1 - Nonlocal strong forms of thin plate, gradient elasticity, magneto-electro-elasticity and phase-field fracture by nonlocal operator method JF - Engineering with Computers N2 - The derivation of nonlocal strong forms for many physical problems remains cumbersome in traditional methods. In this paper, we apply the variational principle/weighted residual method based on nonlocal operator method for the derivation of nonlocal forms for elasticity, thin plate, gradient elasticity, electro-magneto-elasticity and phase-field fracture method. The nonlocal governing equations are expressed as an integral form on support and dual-support. The first example shows that the nonlocal elasticity has the same form as dual-horizon non-ordinary state-based peridynamics. The derivation is simple and general and it can convert efficiently many local physical models into their corresponding nonlocal forms. In addition, a criterion based on the instability of the nonlocal gradient is proposed for the fracture modelling in linear elasticity. Several numerical examples are presented to validate nonlocal elasticity and the nonlocal thin plate. KW - Bruchmechanik KW - Elastizität KW - Peridynamik KW - energy form KW - weak form KW - peridynamics KW - variational principle KW - explicit time integration Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20211207-45388 UR - https://link.springer.com/article/10.1007/s00366-021-01502-8 VL - 2021 SP - 1 EP - 22 ER -