TY - JOUR A1 - Jilte, Ravindra A1 - Ahmadi, Mohammad Hossein A1 - Kumar, Ravinder A1 - Kalamkar, Vilas A1 - Mosavi, Amir T1 - Cooling Performance of a Novel Circulatory Flow Concentric Multi-Channel Heat Sink with Nanofluids JF - Nanomaterials N2 - Heat rejection from electronic devices such as processors necessitates a high heat removal rate. The present study focuses on liquid-cooled novel heat sink geometry made from four channels (width 4 mm and depth 3.5 mm) configured in a concentric shape with alternate flow passages (slot of 3 mm gap). In this study, the cooling performance of the heat sink was tested under simulated controlled conditions.The lower bottom surface of the heat sink was heated at a constant heat flux condition based on dissipated power of 50 W and 70 W. The computations were carried out for different volume fractions of nanoparticles, namely 0.5% to 5%, and water as base fluid at a flow rate of 30 to 180 mL/min. The results showed a higher rate of heat rejection from the nanofluid cooled heat sink compared with water. The enhancement in performance was analyzed with the help of a temperature difference of nanofluid outlet temperature and water outlet temperature under similar operating conditions. The enhancement was ~2% for 0.5% volume fraction nanofluids and ~17% for a 5% volume fraction. KW - Nanostrukturiertes Material KW - Kühlkörper KW - Nasskühlung KW - nanofluid KW - Nanomaterials KW - Machine learning KW - heat sink Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200401-41241 UR - https://www.mdpi.com/2079-4991/10/4/647 VL - 2020 IS - Volume 10, Issue 4, 647 PB - MDPI CY - Basel ER -