TY - JOUR A1 - Jiang, Jin-Wu A1 - Rabczuk, Timon A1 - Park, Harold S. T1 - A Stillinger-Weber Potential for Single-Layer Black Phosphorus, and the Importance of Cross-Pucker Interactions for Negative Poisson's Ratio and Edge Stress-Induced Bending JF - Nanoscale N2 - The distinguishing structural feature of single-layered black phosphorus is its puckered structure, which leads to many novel physical properties. In this work, we first present a new parameterization of the Stillinger–Weber potential for single-layered black phosphorus. In doing so, we reveal the importance of a cross-pucker interaction term in capturing its unique mechanical properties, such as a negative Poisson's ratio. In particular, we show that the cross-pucker interaction enables the pucker to act as a re-entrant hinge, which expands in the lateral direction when it is stretched in the longitudinal direction. As a consequence, single-layered black phosphorus has a negative Poisson's ratio in the direction perpendicular to the atomic plane. As an additional demonstration of the impact of the cross-pucker interaction, we show that it is also the key factor that enables capturing the edge stress-induced bending of single-layered black phosphorus that has been reported in ab initio calculations. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 U6 - http://dx.doi.org/10.1039/C4NR07341J ER - TY - JOUR A1 - Mortazavi, Bohayra A1 - Pereira, Luiz Felipe C. A1 - Jiang, Jin-Wu A1 - Rabczuk, Timon T1 - Modelling heat conduction in polycrystalline hexagonal boron-nitride films JF - Scientific Reports N2 - We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. KW - Wärmeleitfähigkeit KW - Bornitrid KW - Finite-Elemente-Methode Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170425-31534 ER - TY - JOUR A1 - Arash, Behrouz A1 - Rabczuk, Timon A1 - Jiang, Jin-Wu T1 - Nanoresonators and their applications: a state of the art review JF - Applied Physics Reviews N2 - Nanoresonators and their applications: a state of the art review KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 ER -