TY - CHAP A1 - Constales, Denis A1 - Kraußhar, Rolf Sören ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - ON THE KLEIN-GORDON EQUATION ON THE 3-TORUS N2 - In this paper we consider the time independent Klein-Gordon equation on some conformally flat 3-tori with given boundary data. We set up an explicit formula for the fundamental solution. We show that we can represent any solution to the homogeneous Klein-Gordon equation on the torus as finite sum over generalized 3-fold periodic elliptic functions that are in the kernel of the Klein-Gordon operator. Furthermore we prove Cauchy and Green type integral formulas and set up a Teodorescu and Cauchy transform for the toroidal Klein-Gordon operator. These in turn are used to set up explicit formulas for the solution to the inhomogeneous version of the Klein-Gordon equation on the 3-torus. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28639 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - De Aguinaga, José Guillermo ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - INFLUENCE OF DIFFERENT DATA TYPES FOR THE ESTIMATION OF HYDROMECHANICAL PARAMETERS FOR A WATER RETAINING DAM USING SYNTHETIC DATA T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - The present research analyses the error on prediction obtained under different data availability scenarios to determine which measurements contribute to an improvement of model prognosis and which not. A fully coupled 2D hydromechanical model of a water retaining dam is taken as an example. Here, the mean effective stress in the porous skeleton is reduced due to an increase in pore water pressure under drawdown conditions. Relevant model parameters are ranked by scaled sensitivities, Particle Swarm Optimization is applied to determine the optimal parameter values and model validation is performed to determine the magnitude of error forecast. We compare the predictions of the optimized models with results from a forward run of the reference model to obtain actual prediction errors. The analyses presented here were performed to 31 data sets of 100 observations of varying data types. Calibrating with multiple information types instead of only one sort, brings better calibration results and improvement in model prognosis. However, when using several types of information the number of observations have to be increased to be able to cover a representative part of the model domain; otherwise a compromise between data availability and domain coverage prove best. Which type of information for calibration contributes to the best prognoses, could not be determined in advance. For the error in model prognosis does not depends on the error in calibration, but on the parameter error, which unfortunately can not be determined in reality since we do not know its real value. Excellent calibration fits with parameters’ values near the limits of reasonable physical values, provided the highest prognosis errors. While models which included excess pore pressure values for calibration provided the best prognosis, independent of the calibration fit. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170306-27607 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - De Bie, Hendrik A1 - Sommen, Frank ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - VECTOR AND BIVECTOR FOURIER TRANSFORMS IN CLIFFORD ANALYSIS N2 - In the past, several types of Fourier transforms in Clifford analysis have been studied. In this paper, first an overview of these different transforms is given. Next, a new equation in a Clifford algebra is proposed, the solutions of which will act as kernels of a new class of generalized Fourier transforms. Two solutions of this equation are studied in more detail, namely a vector-valued solution and a bivector-valued solution, as well as the associated integral transforms. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28371 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - De Schepper, Nele A1 - Brackx, Fred A1 - Sommen, Frank ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - THE FOURIER-BESSEL TRANSFORM N2 - In this paper we devise a new multi-dimensional integral transform within the Clifford analysis setting, the so-called Fourier-Bessel transform. It appears that in the two-dimensional case, it coincides with the Clifford-Fourier and cylindrical Fourier transforms introduced earlier. We show that this new integral transform satisfies operational formulae which are similar to those of the classical tensorial Fourier transform. Moreover the L2-basis elements consisting of generalized Clifford-Hermite functions appear to be eigenfunctions of the Fourier-Bessel transform. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28387 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Deeb, Maher A1 - Zabel, Volkmar ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - THE APPLICATION OF POD CURVES TO DAMAGE DETECTION BASED ON PARTIAL MODELS– A NUMERICAL AND EXPERIMENTAL STUDY T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - Non-destructive techniques for damage detection became the focus of engineering interests in the last few years. However, applying these techniques to large complex structures like civil engineering buildings still has some limitations since these types of structures are unique and the methodologies often need a large number of specimens for reliable results. For this reason, cost and time can greatly influence the final results. Model Assisted Probability Of Detection (MAPOD) has taken its place among the ranks of damage identification techniques, especially with advances in computer capacity and modeling tools. Nevertheless, the essential condition for a successful MAPOD is having a reliable model in advance. This condition is opening the door for model assessment and model quality problems. In this work, an approach is proposed that uses Partial Models (PM) to compute the Probability Of damage Detection (POD). A simply supported beam, that can be structurally modified and tested under laboratory conditions, is taken as an example. The study includes both experimental and numerical investigations, the application of vibration-based damage detection approaches and a comparison of the results obtained based on tests and simulations. Eventually, a proposal for a methodology to assess the reliability and the robustness of the models is given. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170306-27615 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Djordjevic, Djordje A1 - Petkovic, Dusan A1 - Zivkovic, Darko ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - THE APPLICATION OF INTERVAL CALCULUS TO ESTIMATION OF PLATE DEFLECTION BY SOLVING POISSON’S PARTIAL DIFFERENTIAL EQUATION N2 - This paper describes the application of interval calculus to calculation of plate deflection, taking in account inevitable and acceptable tolerance of input data (input parameters). The simply supported reinforced concrete plate was taken as an example. The plate was loaded by uniformly distributed loads. Several parameters that influence the plate deflection are given as certain closed intervals. Accordingly, the results are obtained as intervals so it was possible to follow the direct influence of a change of one or more input parameters on output (in our example, deflection) values by using one model and one computing procedure. The described procedure could be applied to any FEM calculation in order to keep calculation tolerances, ISO-tolerances, and production tolerances in close limits (admissible limits). The Wolfram Mathematica has been used as tool for interval calculation. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28397 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Ebert, Svend A1 - Bernstein, Swanhild A1 - Cerejeiras, Paula A1 - Kähler, Uwe ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - NONZONAL WAVELETS ON S^N N2 - In the present article we will construct wavelets on an arbitrary dimensional sphere S^n due the approach of approximate Identities. There are two equivalently approaches to wavelets. The group theoretical approach formulates a square integrability condition for a group acting via unitary, irreducible representation on the sphere. The connection to the group theoretical approach will be sketched. The concept of approximate identities uses the same constructions in the background, here we select an appropriate section of dilations and translations in the group acting on the sphere in two steps. At First we will formulate dilations in terms of approximate identities and than we call in translations on the sphere as rotations. This leads to the construction of an orthogonal polynomial system in L²(SO(n+1)). That approach is convenient to construct concrete wavelets, since the appropriate kernels can be constructed form the heat kernel leading to the approximate Identity of Gauss-Weierstra\ss. We will work out conditions to functions forming a family of wavelets, subsequently we formulate how we can construct zonal wavelets from a approximate Identity and the relation to admissibility of nonzonal wavelets. Eventually we will give an example of a nonzonal Wavelet on $S^n$, which we obtain from the approximate identity of Gauss-Weierstraß. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28406 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Eckardt, Stefan A1 - Könke, Carsten ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - ENERGY RELEASE CONTROL FOR NONLINEAR MESOSCALE SIMULATIONS N2 - In nonlinear simulations the loading is, in general, applied in an incremental way. Path-following algorithms are used to trace the equilibrium path during the failure process. Standard displacement controlled solution strategies fail if snap-back phenomena occur. In this contribution, a path-following algorithm based on the dissipation of the inelastic energy is presented which allows for the simulation of snap-backs. Since the constraint is defined in terms of the internal energy, the algorithm is not restricted to continuum damage models. Furthermore, no a priori knowledge about the final damage distribution is required. The performance of the proposed algorithm is illustrated using nonlinear mesoscale simulations. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28414 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Eriksson, Sirkka-Liisa ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - MEAN VALUE PROPERTIES FOR THE WEINSTEIN EQUATION AND MODIFIED DIRAC OPERATORS T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - We study the Weinstein equation u on the upper half space R3+. The Weinstein equation is connected to the axially symmetric potentials. We compute solutions of the Weinstein equation depending on the hyperbolic distance and x2. These results imply the explicit mean value properties. We also compute the fundamental solution. The main tools are the hyperbolic metric and its invariance properties. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27621 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Ferreira, Milton dos Santos A1 - Vieira, Nelson ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - EIGENFUNCTIONS AND FUNDAMENTAL SOLUTIONS FOR THE FRACTIONAL LAPLACIAN IN 3 DIMENSIONS T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - Recently there has been a surge of interest in PDEs involving fractional derivatives in different fields of engineering. In this extended abstract we present some of the results developedin [3]. We compute the fundamental solution for the three-parameter fractional Laplace operator Δ by transforming the eigenfunction equation into an integral equation and applying the method of separation of variables. The obtained solutions are expressed in terms of Mittag-Leffer functions. For more details we refer the interested reader to [3] where it is also presented an operational approach based on the two Laplace transform. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27968 SN - 1611-4086 ER - TY - CHAP A1 - Flaig, Thomas A1 - Apel, Thomas ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - SIMULATION AND MATHEMATICAL OPTIMIZATION OF THE HYDRATION OF CONCRETE FOR AVOIDING THERMAL CRACKS N2 - After mixing of concrete, the hardening starts by an exothermic chemical reaction known as hydration. As the reaction rate depends on the temperature the time in the description of the hydration is replaced by the maturity which is defined as an integral over a certain function depending on the temperature. The temperature distribution is governed by the heat equation with a right hand side depending on the maturity and the temperature itself. We compare of the performance of different time integration schemes of higher order with an automatic time step control. The simulation of the heat distribution is of importance as the development of mechanical properties is driven by the hydration. During this process it is possible that the tensile stresses exceed the tensile strength and cracks occur. The goal is to produce cheap concrete without cracks. Simple crack-criterions use only temperature differences, more involved ones are based on thermal stresses. If the criterion predicts cracks some changes in the input data are needed. This can be interpreted as optimization. The final goal will be to adopt model based optimization (in contrast to simulation based optimization) to the problem of the hydration of young concrete and the avoidance of cracks. The first step is the simulation of the hydration, which we focus in this paper. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28424 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Franssens, Ghislain R. ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - INTRODUCTION TO CLIFFORD ANALYSIS OVER PSEUDO-EUCLIDEAN SPACE N2 - An introduction is given to Clifford Analysis over pseudo-Euclidean space of arbitrary signature, called for short Ultrahyperbolic Clifford Analysis (UCA). UCA is regarded as a function theory of Clifford-valued functions, satisfying a first order partial differential equation involving a vector-valued differential operator, called a Dirac operator. The formulation of UCA presented here pays special attention to its geometrical setting. This permits to identify tensors which qualify as geometrically invariant Dirac operators and to take a position on the naturalness of contravariant and covariant versions of such a theory. In addition, a formal method is described to construct the general solution to the aforementioned equation in the context of covariant UCA. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28433 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Fröbel, Toni A1 - Firmenich, Berthold A1 - Koch, Christian ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - COUPLING PATTERNS IN CIVIL ENGINEERING APPLICATIONS N2 - Buildings can be divided into various types and described by a huge number of parameters. Within the life cycle of a building, especially during the design and construction phases, a lot of engineers with different points of view, proprietary applications and data formats are involved. The collaboration of all participating engineers is characterised by a high amount of communication. Due to these aspects, a homogeneous building model for all engineers is not feasible. The status quo of civil engineering is the segmentation of the complete model into partial models. Currently, the interdependencies of these partial models are not in the focus of available engineering solutions. This paper addresses the problem of coupling partial models in civil engineering. According to the state-of-the-art, applications and partial models are formulated by the object-oriented method. Although this method solves basic communication problems like subclass coupling directly it was found that many relevant coupling problems remain to be solved. Therefore, it is necessary to analyse and classify the relevant coupling types in building modelling. Coupling in computer science refers to the relationship between modules and their mutual interaction and can be divided into different coupling types. The coupling types differ on the degree by which the coupled modules rely upon each other. This is exemplified by a general reference example from civil engineering. A uniform formulation of coupling patterns is described analogously to design patterns, which are a common methodology in software engineering. Design patterns are templates for describing a general reusable solution to a commonly occurring problem. A template is independent of the programming language and the operating system. These coupling patterns are selected according to the specific problems of building modelling. A specific meta-model for coupling problems in civil engineering is introduced. In our meta-model the coupling patterns are a semantic description of a specific coupling design. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28443 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Ghorashi, Seyed Shahram A1 - Rabczuk, Timon A1 - Ródenas García, Juan José A1 - Lahmer, Tom ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - T-SPLINE BASED XIGA FOR ADAPTIVE MODELING OF CRACKED BODIES T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - Safety operation of important civil structures such as bridges can be estimated by using fracture analysis. Since the analytical methods are not capable of solving many complicated engineering problems, numerical methods have been increasingly adopted. In this paper, a part of isotropic material which contains a crack is considered as a partial model and the proposed model quality is evaluated. EXtended IsoGeometric Analysis (XIGA) is a new developed numerical approach [1, 2] which benefits from advantages of its origins: eXtended Finite Element Method (XFEM) and IsoGeometric Analysis (IGA). It is capable of simulating crack propagation problems with no remeshing necessity and capturing singular field at the crack tip by using the crack tip enrichment functions. Also, exact representation of geometry is possible using only few elements. XIGA has also been successfully applied for fracture analysis of cracked orthotropic bodies [3] and for simulation of curved cracks [4]. XIGA applies NURBS functions for both geometry description and solution field approximation. The drawback of NURBS functions is that local refinement cannot be defined regarding that it is based on tensorproduct constructs unless multiple patches are used which has also some limitations. In this contribution, the XIGA is further developed to make the local refinement feasible by using Tspline basis functions. Adopting a recovery based error estimator in the proposed approach for evaluation of the model quality and performing the adaptive processes is in progress. Finally, some numerical examples with available analytical solutions are investigated by the developed scheme. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27637 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Gokce, Hasan Ufuk A1 - Browne, Donal A1 - Gokce, Kamil Umut A1 - Menzel, Karsten ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - IMPROVING ENERGY EFFICIENT OPERATION OF BUILDINGS WITH WIRELESS IT SYSTEMS N2 - Reducing energy consumption is one of the major challenges for present day and will continue for future generations. The emerging EU directives relating to energy (EU EPBD and the EU Directive on Emissions Trading) now place demands on building owners to rate the energy performance of their buildings for efficient energy management. Moreover European Legislation (Directive 2006/32/EC) requires Facility Managers to reduce building energy consumption and operational costs. Currently sophisticated building services systems are available integrating off-the-shelf building management components. However this ad-hoc combination presents many difficulties to building owners in the management and upgrade of these systems. This paper addresses the need for integration concepts, holistic monitoring and analysis methodologies, life-cycle oriented decision support and sophisticated control strategies through the seamless integration of people, ICT-devices and computational resources via introducing the newly developed integrated system architecture. The first concept was applied to a residential building and the results were elaborated to improve current building conditions. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28453 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Gonzalez Calvet, Ramon ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - NEW FOUNDATIONS FOR GEOMETRIC ALGEBRA T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - New foundations for geometric algebra are proposed based upon the existing isomorphisms between geometric and matrix algebras. Each geometric algebra always has a faithful real matrix representation with a periodicity of 8. On the other hand, each matrix algebra is always embedded in a geometric algebra of a convenient dimension. The geometric product is also isomorphic to the matrix product, and many vector transformations such as rotations, axial symmetries and Lorentz transformations can be written in a form isomorphic to a similarity transformation of matrices. We collect the idea that Dirac applied to develop the relativistic electron equation when he took a basis of matrices for the geometric algebra instead of a basis of geometric vectors. Of course, this way of understanding the geometric algebra requires new definitions: the geometric vector space is defined as the algebraic subspace that generates the rest of the matrix algebra by addition and multiplication; isometries are simply defined as the similarity transformations of matrices as shown above, and finally the norm of any element of the geometric algebra is defined as the nth root of the determinant of its representative matrix of order n×n. The main idea of this proposal is an arithmetic point of view consisting of reversing the roles of matrix and geometric algebras in the sense that geometric algebra is a way of accessing, working and understanding the most fundamental conception of matrix algebra as the algebra of transformations of multilinear quantities. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27644 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Grigor'ev, Yuri ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - REGULAR QUATERNIONIC FUNCTIONS AND THEIR APPLICATIONS T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - The theory of regular quaternionic functions of a reduced quaternionic variable is a 3-dimensional generalization of complex analysis. The Moisil-Theodorescu system (MTS) is a regularity condition for such functions depending on the radius vector r = ix+jy+kz seen as a reduced quaternionic variable. The analogues of the main theorems of complex analysis for the MTS in quaternion forms are established: Cauchy, Cauchy integral formula, Taylor and Laurent series, approximation theorems and Cauchy type integral properties. The analogues of positive powers (inner spherical monogenics) are investigated: the set of recurrence formulas between the inner spherical monogenics and the explicit formulas are established. Some applications of the regular function in the elasticity theory and hydrodynamics are given. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27988 SN - 1611-4086 ER - TY - CHAP A1 - Grob, Dennis A1 - Constales, Denis A1 - Kraußhar, Rolf Sören ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - THE HYPERCOMPLEX SZEGÖ KERNEL METHOD FOR 3D MAPPING PROBLEMS N2 - In this paper we present rudiments of a higher dimensional analogue of the Szegö kernel method to compute 3D mappings from elementary domains onto the unit sphere. This is a formal construction which provides us with a good substitution of the classical conformal Riemann mapping. We give explicit numerical examples and discuss a comparison of the results with those obtained alternatively by the Bergman kernel method. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28464 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Gutierrez S, Andrei A1 - Ramirez, Marco P. A1 - Rodriguez, Octavio A1 - Sanchez N., V.D. ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - ON THE SOLUTIONS OF ELECTRICAL IMPEDANCE EQUATION: A PSEUDOANALYTIC APPROACH FOR SEPARABLE-VARIABLES CONDUCTIVITY FUNCTION N2 - Using a quaternionic reformulation of the electrical impedance equation, we consider a two-dimensional separable-variables conductivity function and, posing two different techniques, we obtain a special class of Vekua equation, whose general solution can be approach by virtue of Taylor series in formal powers, for which is possible to introduce an explicit Bers generating sequence. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28478 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Göbel, Luise A1 - Osburg, Andrea A1 - Lahmer, Tom ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - STUDY OF ANALYTICAL MODELS OF THE MECHANICAL BEHAVIOR OF POLYMER-MODIFIED CONCRETE T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - Polymer modification of mortar and concrete is a widely used technique in order to improve their durability properties. Hitherto, the main application fields of such materials are repair and restoration of buildings. However, due to the constant increment of service life requirements and the cost efficiency, polymer modified concrete (PCC) is also used for construction purposes. Therefore, there is a demand for studying the mechanical properties of PCC and entitative differences compared to conventional concrete (CC). It is significant to investigate whether all the assumed hypotheses and existing analytical formulations about CC are also valid for PCC. In the present study, analytical models available in the literature are evaluated. These models are used for estimating mechanical properties of concrete. The investigated property in this study is the modulus of elasticity, which is estimated with respect to the value of compressive strength. One existing database was extended and adapted for polymer-modified concrete mixtures along with their experimentally measured mechanical properties. Based on the indexed data a comparison between model predictions and experiments was conducted by calculation of forecast errors. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27973 SN - 1611-4086 ER - TY - CHAP A1 - Hamm, Matthias A1 - Beißert, Ulrike A1 - König, Markus ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - SIMULATION-BASED OPTIMIZATION OF CONSTRUCTION SCHEDULES BY USING PARETO SIMULATED ANNEALING N2 - Within the scheduling of construction projects, different, partly conflicting objectives have to be considered. The specification of an efficient construction schedule is a challenging task, which leads to a NP-hard multi-criteria optimization problem. In the past decades, so-called metaheuristics have been developed for scheduling problems to find near-optimal solutions in reasonable time. This paper presents a Simulated Annealing concept to determine near-optimal construction schedules. Simulated Annealing is a well-known metaheuristic optimization approach for solving complex combinatorial problems. To enable dealing with several optimization objectives the Pareto optimization concept is applied. Thus, the optimization result is a set of Pareto-optimal schedules, which can be analyzed for selecting exactly one practicable and reasonable schedule. A flexible constraint-based simulation approach is used to generate possible neighboring solutions very quickly during the optimization process. The essential aspects of the developed Pareto Simulated Annealing concept are presented in detail. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28499 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Harbrecht, Helmut A1 - Eppler, K. ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - SHAPE OPTIMIZATION FOR FREE BOUNDARY PROBLEMS N2 - In this paper three different formulations of a Bernoulli type free boundary problem are discussed. By analyzing the shape Hessian in case of matching data it is distinguished between well-posed and ill-posed formulations. A nonlinear Ritz-Galerkin method is applied for discretizing the shape optimization problem. In case of well-posedness existence and convergence of the approximate shapes is proven. In combination with a fast boundary element method efficient first and second order shape optimization algorithms are obtained. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28508 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Hartmann, Veronika A1 - Smarsly, Kay A1 - Lahmer, Tom ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - ROBUST SCHEDULING IN CONSTRUCTION ENGINEERING T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - In construction engineering, a schedule’s input data, which is usually not exactly known in the planning phase, is considered deterministic when generating the schedule. As a result, construction schedules become unreliable and deadlines are often not met. While the optimization of construction schedules with respect to costs and makespan has been a matter of research in the past decades, the optimization of the robustness of construction schedules has received little attention. In this paper, the effects of uncertainties inherent to the input data of construction schedules are discussed. Possibilities are investigated to improve the reliability of construction schedules by considering alternative processes for certain tasks and by identifying the combination of processes generating the most robust schedule with respect to the makespan of a construction project. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27994 SN - 1611-4086 ER - TY - CHAP A1 - Hitzer, Eckhard ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - THE CLIFFORD FOURIER TRANSFORM IN REAL CLIFFORD ALGEBRAS T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - We briefly review and use the recent comprehensive research on the manifolds of square roots of −1 in real Clifford geometric algebras Cl(p,q) in order to construct the Clifford Fourier transform. Basically in the kernel of the complex Fourier transform the complex imaginary unit j is replaced by a square root of −1 in Cl(p,q). The Clifford Fourier transform (CFT) thus obtained generalizes previously known and applied CFTs, which replaced the complex imaginary unit j only by blades (usually pseudoscalars) squaring to −1. A major advantage of real Clifford algebra CFTs is their completely real geometric interpretation. We study (left and right) linearity of the CFT for constant multivector coefficients in Cl(p,q), translation (x-shift) and modulation (w -shift) properties, and signal dilations. We show an inversion theorem. We establish the CFT of vector differentials, partial derivatives, vector derivatives and spatial moments of the signal. We also derive Plancherel and Parseval identities as well as a general convolution theorem. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27652 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Hommel, Angela A1 - Gürlebeck, Klaus ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - THE RELATIONSHIP BETWEEN LINEAR ELASTICITY THEORY AND COMPLEX FUNCTION THEORY STUDIED ON THE BASIS OF FINITE DIFFERENCES T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - It is well-known that the solution of the fundamental equations of linear elasticity for a homogeneous isotropic material in plane stress and strain state cases can be equivalently reduced to the solution of a biharmonic equation. The discrete version of the Theorem of Goursat is used to describe the solution of the discrete biharmonic equation by the help of two discrete holomorphic functions. In order to obtain a Taylor expansion of discrete holomorphic functions we introduce a basis of discrete polynomials which fulfill the so-called Appell property with respect to the discrete adjoint Cauchy-Riemann operator. All these steps are very important in the field of fracture mechanics, where stress and displacement fields in the neighborhood of singularities caused by cracks and notches have to be calculated with high accuracy. Using the sum representation of holomorphic functions it seems possible to reproduce the order of singularity and to determine important mechanical characteristics. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28010 SN - 1611-4086 ER - TY - CHAP A1 - Huhnt, Wolfgang A1 - Richter, Sven ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - Modification Management for Planning and Construction Processes N2 - Planning and construction processes are characterized by the peculiarity that they need to be designed individually for each project. It is necessary to set up an individual schedule for each project. As a basis for a new project, schedules from already finished projects are used, but adaptions are always necessary. In practice, scheduling tools only document a process. Schedules cover a set of activities, their duration and a set of interdependencies between activities. The design of a process is up to the user. It is not necessary to specify each interdependency, and completeness and correctness need to be checked manually. No methodologies are available to guarantee properties such as correctness or completeness. The considerations presented in the paper are based on an approach where a planning and a construction process including the interdependencies between planning and construction activities are regarded as a result. Selected information need to be specified by a user, and a proposal for an order of planning and construction activities is computed. As a consequence, process properties such as correctness and completeness can be guaranteed with respect to user input. Especially in Germany, clients are allowed to modify their requirements at any time. This leads to modifications in the planning and construction processes. This paper covers a mathematical formulation for this problem based on set theory. A complex structure is set up covering objects and relations; and operations are defined that guarantee consistency in the underlying and versioned process description. The presented considerations are based on previous work. This paper can be regarded as the next step in a series of previous work describing how a suitable concept for handling, planning and construction processes in civil engineering can be formed. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28510 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Häfner, Stefan A1 - Vogel, Frank A1 - Könke, Carsten ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - FINITE ELEMENT ANALYSIS OF TORSION FOR ARBITRARY CROSS-SECTIONS N2 - The present article proposes an alternative way to compute the torsional stiffness based on three-dimensional continuum mechanics instead of applying a specific theory of torsion. A thin, representative beam slice is discretized by solid finite elements. Adequate boundary conditions and coupling conditions are integrated into the numerical model to obtain a proper answer on the torsion behaviour, thus on shear center, shear stress and torsional stiffness. This finite element approach only includes general assumptions of beam torsion which are independent of cross-section geometry. These assumptions essentially are: no in-plane deformation, constant torsion and free warping. Thus it is possible to achieve numerical solutions of high accuracy for arbitrary cross-sections. Due to the direct link to three-dimensional continuum mechanics, it is possible to extend the range of torsion analysis to sections which are composed of different materials or even to heterogeneous beams on a high scale of resolution. A brief study follows to validate the implementation and results are compared to analytical solutions. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28483 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Hölter, Raoul A1 - Mahmoudi, Elham A1 - Schanz, Tom ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - OPTIMAL SENSOR LOCATION FOR PARAMETER IDENTIFICATION IN SOFT CLAY T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - Performing parameter identification prior to numerical simulation is an essential task in geotechnical engineering. However, it has to be kept in mind that the accuracy of the obtained parameter is closely related to the chosen experimental setup, such as the number of sensors as well as their location. A well considered position of sensors can increase the quality of the measurement and to reduce the number of monitoring points. This Paper illustrates this concept by means of a loading device that is used to identify the stiffness and permeability of soft clays. With an initial setup of the measurement devices the pore water pressure and the vertical displacements are recorded and used to identify the afore mentioned parameters. Starting from these identified parameters, the optimal measurement setup is investigated with a method based on global sensitivity analysis. This method shows an optimal sensor location assuming three sensors for each measured quantity, and the results are discussed. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28008 SN - 1611-4086 ER - TY - CHAP A1 - Ignatova, Elena A1 - Kirschke, Heiko A1 - Tauscher, Eike A1 - Smarsly, Kay ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - PARAMETRIC GEOMETRIC MODELING IN CONSTRUCTION PLANNING USING INDUSTRY FOUNDATION CLASSES T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - One of the most promising and recent advances in computer-based planning is the transition from classical geometric modeling to building information modeling (BIM). Building information models support the representation, storage, and exchange of various information relevant to construction planning. This information can be used for describing, e.g., geometric/physical properties or costs of a building, for creating construction schedules, or for representing other characteristics of construction projects. Based on this information, plans and specifications as well as reports and presentations of a planned building can be created automatically. A fundamental principle of BIM is object parameterization, which allows specifying geometrical, numerical, algebraic and associative dependencies between objects contained in a building information model. In this paper, existing challenges of parametric modeling using the Industry Foundation Classes (IFC) as a federated model for integrated planning are shown, and open research questions are discussed. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28024 SN - 1611-4086 ER - TY - CHAP A1 - Itam, Zarina ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - NUMERICAL SIMULATION OF THERMO-HYGRAL ALKALI-SILICA REACTION MODEL IN CONCRETE AT THE MESOSCALE N2 - This research aims to model Alkali-Silica Reaction gel expansion in concrete under the influence of hygral and thermal loading, based on experimental results. ASR provokes a heterogeneous expansion in concrete leading to dimensional changes and eventually the premature failure of the concrete structure. This can result in map cracking on the concrete surface which will decrease the concrete stiffness. Factors that influence ASR are parameters such as the cement alkalinity, the number of deleterious silica from the aggregate used, concrete porosity, and external factors like temperature, humidity and external source of alkali from ingression of deicing salts. Uncertainties of the influential factors make ASR a difficult phenomenon to solve; hence my approach to this matter is to solve the problem using stochastic modelling, where a numerical simulation of concrete cross-section with integration of experimental results from Finger-Institute for Building Materials Science at the Bauhaus-Universität Weimar. The problem is formulated as a multi-field problem, combining heat transfer, fluid transfer and the reaction rate model with the mechanical stress field. Simulation is performed as a mesoscale model considering aggregates and mortar matrix. The reaction rate model will be conducted using experimental results from concrete expansions due to ASR gained from concrete prism tests. Expansive strains values for transient environmental conditions due to the reaction rate will be determined from calculation based on the reaction rate model. Results from these models will be able to predict the rate of ASR expansion and the cracking propagation that may arise. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28536 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Jahr, Katrin A1 - Schlich, Robert A1 - Dragos, Kosmas A1 - Smarsly, Kay ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - DECENTRALIZED AUTONOMOUS FAULT DETECTION IN WIRELESS STRUCTURAL HEALTH MONITORING SYSTEMS USING STRUCTURAL RESPONSE DATA T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - Sensor faults can affect the dependability and the accuracy of structural health monitoring (SHM) systems. Recent studies demonstrate that artificial neural networks can be used to detect sensor faults. In this paper, decentralized artificial neural networks (ANNs) are applied for autonomous sensor fault detection. On each sensor node of a wireless SHM system, an ANN is implemented to measure and to process structural response data. Structural response data is predicted by each sensor node based on correlations between adjacent sensor nodes and on redundancies inherent in the SHM system. Evaluating the deviations (or residuals) between measured and predicted data, sensor faults are autonomously detected by the wireless sensor nodes in a fully decentralized manner. A prototype SHM system implemented in this study, which is capable of decentralized autonomous sensor fault detection, is validated in laboratory experiments through simulated sensor faults. Several topologies and modes of operation of the embedded ANNs are investigated with respect to the dependability and the accuracy of the fault detection approach. In conclusion, the prototype SHM system is able to accurately detect sensor faults, demonstrating that neural networks, processing decentralized structural response data, facilitate autonomous fault detection, thus increasing the dependability and the accuracy of structural health monitoring systems. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28031 SN - 1611-4086 ER - TY - CHAP A1 - Jaouadi, Zouhour A1 - Lahmer, Tom ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - Topology optimization of structures subjected to multiple load cases by introducing the Epsilon constraint method T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - A topology optimization method has been developed for structures subjected to multiple load cases (Example of a bridge pier subjected to wind loads, traffic, superstructure...). We formulate the problem as a multi-criterial optimization problem, where the compliance is computed for each load case. Then, the Epsilon constraint method (method proposed by Chankong and Haimes, 1971) is adapted. The strategy of this method is based on the concept of minimizing the maximum compliance resulting from the critical load case while the other remaining compliances are considered in the constraints. In each iteration, the compliances of all load cases are computed and only the maximum one is minimized. The topology optimization process is switching from one load to another according to the variation of the resulting compliance. In this work we will motivate and explain the proposed methodology and provide some numerical examples. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28042 SN - 1611-4086 ER - TY - CHAP A1 - Jung, Bastian A1 - Morgenthal, Guido ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - ASSESSMENT OF INTEGRAL BRIDGES USING QUANTITATIVE MODEL EVALUATION T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - Numerical simulations in the general field of civil engineering are common for the design process of structures and/or the assessment of existing buildings. The behaviour of these structures is analytically unknown and is approximated with numerical simulation methods like the Finite Element Method (FEM). Therefore the real structure is transferred into a global model (GM, e.g. concrete bridge) with a wide range of sub models (partial models PM, e.g. material modelling, creep). These partial models are coupled together to predict the behaviour of the observed structure (GM) under different conditions. The engineer needs to decide which models are suitable for computing realistically and efficiently the physical processes determining the structural behaviour. Theoretical knowledge along with the experience from prior design processes will influence this model selection decision. It is thus often a qualitative selection of different models. The goal of this paper is to present a quantitative evaluation of the global model quality according to the simulation of a bridge subject to direct loading (dead load, traffic) and indirect loading (temperature), which induce restraint effects. The model quality can be separately investigated for each partial model and also for the coupled partial models in a global structural model. Probabilistic simulations are necessary for the evaluation of these model qualities by using Uncertainty and Sensitivity Analysis. The method is applied to the simulation of a semi-integral concrete bridge with a monolithic connection between the superstructure and the piers, and elastomeric bearings at the abutments. The results show that the evaluation of global model quality is strongly dependent on the sensitivity of the considered partial models and their related quantitative prediction quality. This method is not only a relative comparison between different models, but also a quantitative representation of model quality using probabilistic simulation methods, which can support the process of model selection for numerical simulations in research and practice. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27662 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Karaki, Ghada ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - DEPENDENCY OF THE INFLUENCE OF INPUT PARAMETERS OF BVI MODELS ON THE INITIAL EXCITATIONS AND SPEED RANGES T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - Bridge vibration due to traffic loading has been subject of extensive research in the last decades. Such studies are concerned with deriving solutions for the bridge-vehicle interaction (BVI) and analyzing the dynamic responses considering randomness of the coupled model’s (BVI) input parameters and randomness of road unevenness. This study goes further to examine the effects of such randomness of input parameters and processes on the variance of dynamic responses in quantitative measures. The input parameters examined in the sensitivity analysis are, stiffness and damping of vehicle’s suspension system, axle spacing, and stiffness and damping of bridge. This study also examines the effects of the initial excitation of a vehicle on the influences of the considered input parameters. Variance based sensitivity analysis is often applied to deterministic models. However, the models for the dynamic problem is a stochastic one due to the simulations of the random processes. Thus, a setting using a joint meta-model; one for the mean response and other for the dispersion of the response is developed. The joint model is developed within the framework of Generalized Linear Models (GLM). An enhancement of the GLM procedure is suggested and tested; this enhancement incorporates Moving Least Squares (MLS) approximation algorithms in the fitting of the mean component of the joint model. The sensitivity analysis is then performed on the joint-model developed for the dynamic responses caused by BVI. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27675 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Karaki, Ghada ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - SELECTION AND SCALING OF GROUND MOTION RECORDS FOR SEISMIC ANALYSIS USING AN OPTIMIZATION ALGORITHM T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - The nonlinear time history analysis and seismic performance based methods require a set of scaled ground motions. The conventional procedure of ground motion selection is based on matching the motion properties, e.g. magnitude, amplitude, fault distance, and fault mechanism. The seismic target spectrum is only used in the scaling process following the random selection process. Therefore, the aim of the paper is to present a procedure to select a sets of ground motions from a built database of ground motions. The selection procedure is based on running an optimization problem using Dijkstra’s algorithm to match the selected set of ground motions to a target response spectrum. The selection and scaling procedure of optimized sets of ground motions is presented by examining the analyses of nonlinear single degree of freedom systems. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28058 SN - 1611-4086 ER - TY - CHAP A1 - Karaki, Ghada A1 - Freundt, Ursula A1 - Vogt, Ralf ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - MODELING OF BRIDGE BEARING UNDER TRANSIENT LOADING N2 - The evident advances of the computational power of the digital computers enable the modeling of the total system of structures. Such modeling demands compatible representations of the couplings of different structural subsystems. Therefore, models of dynamic interaction between the vehicle and the bridge and models of a bridge bearing, a coupling element between the bridge's superstructure and substructure, are of interest and discussed within this paper. The vehicle-bridge interaction may be described as a function connecting two sets of behavior. In this case, the coupling is embodied by mutual parameters that affect both systems, such as the frequency content of the bridge and the vehicle. Whereas the bridge bearings are elements used specifically to couple, in such elements the deformation and the transferred loads are used in characterizing the coupling The nature of these couplings and their influence on the bridge response is different. However, the need to assess the amount of dynamic response transferred by or within these couplings is a common argument. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28544 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Kavrakov, Igor A1 - Timmler, Hans-Georg A1 - Morgenthal, Guido ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - STRUCTURAL OPTIMIZATION USING THE ENERGY METHOD WITH INTEGRAL MATERIAL BEHAVIOUR T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - With the advances of the computer technology, structural optimization has become a prominent field in structural engineering. In this study an unconventional approach of structural optimization is presented which utilize the Energy method with Integral Material behaviour (EIM), based on the Lagrange’s principle of minimum potential energy. The equilibrium condition with the EIM, as an alternative method for nonlinear analysis, is secured through minimization of the potential energy as an optimization problem. Imposing this problem as an additional constraint on a higher cost function of a structural property, a bilevel programming problem is formulated. The nested strategy of solution of the bilevel problem is used, treating the energy and the upper objective function as separate optimization problems. Utilizing the convexity of the potential energy, gradient based algorithms are employed for its minimization and the upper cost function is minimized using the gradient free algorithms, due to its unknown properties. Two practical examples are considered in order to prove the efficiency of the method. The first one presents a sizing problem of I steel section within encased composite cross section, utilizing the material nonlinearity. The second one is a discrete shape optimization of a steel truss bridge, which is compared to a previous study based on the Finite Element Method. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28065 SN - 1611-4086 ER - TY - CHAP A1 - Keitel, Holger ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - QUANTIFYING THE QUALITY OF PARTIAL MODEL COUPLING AND ITS EFFECT ON THE SIMULATED STRUCTURAL BEHAVIOR T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - The process of analysis and design in structural engineering requires the consideration of different partial models, for example loading, structural materials, structural elements, and analysis types. The various partial models are combined by coupling several of their components. Due to the large number of available partial models describing similar phenomena, many different model combinations are possible to simulate the same aspects of a structure. The challenging task of an engineer is to select a model combination that ensures a sufficient, reliable prognosis. In order to achieve this reliable prognosis of the overall structural behavior, a high individual quality of the partial models and an adequate coupling of the partial models is required. Several methodologies have been proposed to evaluate the quality of partial models for their intended application, but a detailed study of the coupling quality is still lacking. This paper proposes a new approach to assess the coupling quality of partial models in a quantitative manner. The approach is based on the consistency of the coupled data and applies for uni- and bidirectional coupled partial models. Furthermore, the influence of the coupling quality on the output quantities of the partial models is considered. The functionality of the algorithm and the effect of the coupling quality are demonstrated using an example of coupled partial models in structural engineering. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27689 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Keitel, Holger A1 - Dimmig-Osburg, Andrea A1 - Zabel, Volkmar ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - CHARACTERIZATION OF TIME-DEPENDENT DEFORMATIONS OF POLYMER CEMENT CONCRETE (PCC) N2 - Tests on Polymer Modified Cement Concrete (PCC) have shown significant large creep deformation. The reasons for that as well as additional material phenomena are explained in the following paper. Existing creep models developed for standard concrete are studied to determine the time-dependent deformations of PCC. These models are: model B3 by Bažant and Bajewa, the models according to Model Code 90 and ACI 209 as well as model GL2000 by Gardner and Lockman. The calculated creep strains are compared to existing experimental data of PCC and the differences are pointed out. Furthermore, an optimization of the model parameters is performed to fit the models to the experimental data to achieve a better model prognosis. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28552 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Kersten, Jens A1 - Rodehorst, Volker ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - TOWARDS STEREO VISION- AND LASER SCANNER-BASED UAS POSE ESTIMATION T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - A central issue for the autonomous navigation of mobile robots is to map unknown environments while simultaneously estimating its position within this map. This chicken-eggproblem is known as simultaneous localization and mapping (SLAM). Asctec’s quadrotor Pelican is a powerful and flexible research UAS (unmanned aircraft system) which enables the development of new real-time on-board algorithms for SLAM as well as autonomous navigation. The relative UAS pose estimation for SLAM, usually based on low-cost sensors like inertial measurement units (IMU) and barometers, is known to be affected by high drift rates. In order to significantly reduce these effects, we incorporate additional independent pose estimation techniques using exteroceptive sensors. In this article we present first pose estimation results using a stereo camera setup as well as a laser range finder, individually. Even though these methods fail in few certain configurations we demonstrate their effectiveness and value for the reduction of IMU drift rates and give an outlook for further works towards SLAM. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28072 SN - 1611-4086 ER - TY - CHAP A1 - Khan, Farhan Manzoor Ahmed A1 - Cong, ZiXiang A1 - Karsten, Menzel A1 - Stack, Paul ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - TRACKING OCCUPANTS AND INVENTORY ITEMS IN BUILDINGS USING RADIO FREQUENCY IDENTIFICATION (RFID) TECHNOLOGY N2 - In order to make control decisions, Smart Buildings need to collect data from multiple sources and bring it to a central location, such as the Building Management System (BMS). This needs to be done in a timely and automated fashion. Besides data being gathered from different energy using elements, information of occupant behaviour is also important for a building’s requirement analysis. In this paper, the parameter of Occupant Density was considered to help find behaviour of occupants towards a building space. Through this parameter, support for building energy consumption and requirements based on occupant need and demands was provided. The demonstrator presented provides information on the number of people present in a particular building space at any time, giving the space density. Such collections of density data made over a certain period of time represents occupant behaviour towards the building space, giving its usage patterns. Similarly, inventory items were tracked and monitored for moving out or being brought into a particular read zone. For both, people and inventory items, this was achieved using small, low-cost, passive Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) tags. Occupants were given the tags in a form factor of a credit card to be possessed at all times. A central database was built where occupant and inventory information for a particular building space was maintained for monitoring and providing a central data access. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28562 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Khosravian, Reza A1 - Wuttke, Frank ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - QUALITATIVE INVESTIGATION OF THE EFFECT OF SOIL MODELING APPROACH ON DYNAMIC BEHAVIOR OF A SMALL-SCALE 2-DOF STRUCTURE WITH PILE FOUNDATION T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - Known as a sophisticated phenomenon in civil engineering problems, soil structure interaction has been under deep investigations in the field of Geotechnics. On the other hand, advent of powerful computers has led to development of numerous numerical methods to deal with this phenomenon, resulting in a wide variety of methods trying to simulate the behavior of the soil stratum. This survey studies two common approaches to model the soil’s behavior in a system consisting of a structure with two degrees of freedom, representing a two-storey frame structure made of steel, with the column resting on a pile embedded into sand in laboratory scale. The effect of soil simulation technique on the dynamic behavior of the structure is of major interest in the study. Utilized modeling approaches are the so-called Holistic method, and substitution of soil with respective impedance functions. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28080 SN - 1611-4086 ER - TY - CHAP A1 - Khristich, Dmitrii A1 - Astapov, Yuri ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - VARIATIONAL POSITING AND SOLUTION OF COUPLED THERMOMECHANICAL PROBLEMS IN A REFERENCE CONFIGURATION T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - Variational formulation of a coupled thermomechanical problem of anisotropic solids for the case of non-isothermal finite deformations in a reference configuration is shown. The formulation of the problem includes: a condition of equilibrium flow of a deformation process in the reference configuration; an equation of a coupled heat conductivity in a variational form, in which an influence of deformation characteristics of a process on the temperature field is taken into account; tensor-linear constitutive relations for a hypoelastic material; kinematic and evolutional relations; initial and boundary conditions. Based on this formulation several axisymmetric isothermal and coupled problems of finite deformations of isotropic and anisotropic bodies are solved. The solution of coupled thermomechanical problems for a hollow cylinder in case of finite deformation showed an essential influence of coupling on distribution of temperature, stresses and strains. The obtained solutions show the development of stressstrain state and temperature changing in axisymmetric bodies in the case of finite deformations. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28091 SN - 1611-4086 ER - TY - CHAP A1 - Kinzler, Steffen A1 - Grabe, Jürgen ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - APPLICATION OF MULTICRITERIAL NUMERICAL OPTIMISATION IN GEOTECHNICAL ENGINEERING N2 - Geotechnical constructions are sophisticated structures due to the non-linear soil behaviour and the complex soil-structure interaction, which entails great exigencies on the liable engineer during the design process. The process can be schematised as a difficult and, depending on the opportunities and skills of the processor more or less innovative, creative and heuristic search for one or a multiple of defined objectives under given boundary conditions. Wholistic approaches including numerical optimisation which support the constructing engineer in this task do not currently exist. Abstract problem formulation is not state of the art; commonly parameter studies are bounded by computational effort. Thereby potential regarding cost effectiveness, construction time, load capacity and/or serviceability are often used insufficiently. This paper describes systematic approaches for comprehensive optimisation of selected geotechnical constructions like combined pile raft foundations and quay wall structures. Several optimisation paradigms like the mono- and the multi-objective optimisation are demonstrated and their use for a more efficient design concerning various intentions is shown in example. The optimisation is implemented by using Evolutionary Algorithms. The applicability to geotechnical real world problems including nonlinearities, discontinuities and multi-modalities is shown. The routines are adapted to common problems and coupled with conventional analysis procedures as well as with numerical calculation software based on the finite element method. Numerical optimisation of geotechnical design using efficient algorithms is able to deliver highly effective solutions after investing more effort into the parameterization of the problem. Obtained results can be used for realizing different constructions near the stability limit, visualizing the sensitivity regarding the construction parameters or simply procuring more effective solutions. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28616 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Knabe, Tina ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - CONSTITUTIVE MODELS FOR SUBSOIL IN THE CONTEXT OF STRUCTURAL ANALYSIS IN CONSTRUCTION ENGINEERING N2 - Parameters of constitutive models are obtained generally comparing the results of forward numerical simulations to measurement data. Mostly the parameter values are varied by trial-and-error in order to reach an improved fit and obtain plausible results. However, the description of complex soil behavior requires advanced constitutive models where the rising complexity of these models mainly increases the number of unknown constitutive parameters. Thus an efficient identification "by hand" becomes quite difficult for most practical geotechnical problems. The main focus of this article is on finding a vector of parameters in a given search space which minimizes discrepancy between measurements and the associated numerical result. Classically, the parameter values are estimated from laboratory tests on small samples (triaxial tests or oedometer tests). For this purpose an automatic population-based approach is present to determine the material parameters for reconstituted and natural Bothkennar Clay. After the identification a statistical assessment is carried out of numerical results to evaluate different constitutive models. On the other side a geotechnical problem, stone columns under an embankment, is treated in a well instrumented field trial in Klagenfurt, Austria. For the identification purpose there are measurements from multilevel-piezometers, multilevel-extensometers and horizontal inclinometer. Based on the simulation of the stone columns in a FE-Model the identification of the constitutive parameters is similar to the experimental tests by minimizing the absolute error between measurement and numerical curves. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28628 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Kraußhar, Rolf Sören ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - SOME HARMONIC ANALYSIS ON MÖBIUS STRIP DOMAINS AND THE KLEIN BOTTLE IN Rn T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - The aim of this paper we discuss explicit series constructions for the fundamental solution of the Helmholtz operator on some important examples non-orientable conformally at manifolds. In the context of this paper we focus on higher dimensional generalizations of the Klein bottle which in turn generalize higher dimensional Möbius strips that we discussed in preceding works. We discuss some basic properties of pinor valued solutions to the Helmholtz equation on these manifolds. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27692 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Kraußhar, Rolf Sören A1 - de Almeida, Regina ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - FUNDAMENTALS OF A WIMAN VALIRON THEORY FOR POLYMONOGENIC FUNCTIONS T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - In this paper we present some rudiments of a generalized Wiman-Valiron theory in the context of polymonogenic functions. In particular, we analyze the relations between different notions of growth orders and the Taylor coefficients. Our main intention is to look for generalizations of the Lindel¨of-Pringsheim theorem. In contrast to the classical holomorphic and the monogenic setting we only obtain inequality relations in the polymonogenic setting. This is due to the fact that the Almansi-Fischer decomposition of a polymonogenic function consists of different monogenic component functions where each of them can have a totally different kind of asymptotic growth behavior. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28100 SN - 1611-4086 ER - TY - CHAP A1 - Kulchytskyy, Artem A1 - Horokhov, Yevgen A1 - Gubanov, Vadim A1 - Golikov, Alexandr ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - THE INFLUENCE OF THE LOCAL CONCAVITY ON THE FUNCTIONING OF BEARING SHELL OF HIGH-RISE CONSTRUCTION T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - Areas with various defects and damages, which reduce carrying capacity, were examined in a study of metal chimneys. In this work, the influence of the local dimples on the function of metal chimneys was considered. Modeling tasks were completed in the software packages LIRA and ANSYS. Parameters were identified, which characterize the local dimples, and a numerical study of the influence of local dimples on the stress-strain state of shells of metal chimneys was conducted. A distribution field of circular and meridional tension was analyzed in a researched area. Zones of influence of dimples on the bearing cover of metal chimneys were investigated. The bearing capacities of high-rise structures with various dimple geometries and various cover parameters were determined with respect to specified areas of the trunk. Dependent relationships are represented graphically for the decrease in bearing capacity of a cover with respect to dimples. Diameter and thickness of covers of metal chimneys were constructed according to the resulting data. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27701 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Kunoth, Angela ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - MULTISCALE ANALYSIS OF MULTIVARIATE DATA N2 - For many applications, nonuniformly distributed functional data is given which lead to large–scale scattered data problems. We wish to represent the data in terms of a sparse representation with a minimal amount of degrees of freedom. For this, an adaptive scheme which operates in a coarse-to-fine fashion using a multiscale basis is proposed. Specifically, we investigate hierarchical bases using B-splines and spline-(pre)wavelets. At each stage a leastsquares approximation of the data is computed. We take into account different requests arising in large-scale scattered data fitting: we discuss the fast iterative solution of the least square systems, regularization of the data, and the treatment of outliers. A particular application concerns the approximate continuation of harmonic functions, an issue arising in geodesy. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28644 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Lahmer, Tom ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - HYDRO-MECHANICAL COUPLED FIELD SYSTEM IDENTIFICATION - APPLICATION TO WATER RESERVOIRS N2 - In this paper we present an inverse method which is capable of identifying system components in a hydro-mechanically coupled system, i.e. for fluid flow in porous media. As an example we regard water dams that were constructed more than hundred years ago but which are still in use. Over the time ageing processes have changed the condition of these dams. Within the dams fissures might have grown. The proposed method is designed to locate these fissures out of combined mechanical and hydraulic measurements. In a numerical example the fissures or damaged zones are described by a smeared crack model. The task is now to identify simultaneously the spatial distribution of Young’s modulus and the hydraulic permeability due to the fact, that in regions where damages are present, the mechanical stiffness of the system is reduced and the permeability increased. The inversion is shown to be an ill-posed problem. As a consequence regularizing methods have to be applied, where the nonlinear Landweber method (a gradient type method combined with a discrepancy principle) has proven to be an efficient choice. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28650 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER -