TY - JOUR A1 - Eckardt, Stefan A1 - Könke, Carsten T1 - Adaptive damage simulation of concrete using heterogeneous multiscale models JF - Journal of Algorithms & Computational Technology N2 - Adaptive damage simulation of concrete using heterogeneous multiscale models KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2008 SP - 275 EP - 297 ER - TY - JOUR A1 - Faizollahzadeh Ardabili, Sina A1 - Najafi, Bahman A1 - Alizamir, Meysam A1 - Mosavi, Amir A1 - Shamshirband, Shahaboddin A1 - Rabczuk, Timon T1 - Using SVM-RSM and ELM-RSM Approaches for Optimizing the Production Process of Methyl and Ethyl Esters JF - Energies N2 - The production of a desired product needs an effective use of the experimental model. The present study proposes an extreme learning machine (ELM) and a support vector machine (SVM) integrated with the response surface methodology (RSM) to solve the complexity in optimization and prediction of the ethyl ester and methyl ester production process. The novel hybrid models of ELM-RSM and ELM-SVM are further used as a case study to estimate the yield of methyl and ethyl esters through a trans-esterification process from waste cooking oil (WCO) based on American Society for Testing and Materials (ASTM) standards. The results of the prediction phase were also compared with artificial neural networks (ANNs) and adaptive neuro-fuzzy inference system (ANFIS), which were recently developed by the second author of this study. Based on the results, an ELM with a correlation coefficient of 0.9815 and 0.9863 for methyl and ethyl esters, respectively, had a high estimation capability compared with that for SVM, ANNs, and ANFIS. Accordingly, the maximum production yield was obtained in the case of using ELM-RSM of 96.86% for ethyl ester at a temperature of 68.48 °C, a catalyst value of 1.15 wt. %, mixing intensity of 650.07 rpm, and an alcohol to oil molar ratio (A/O) of 5.77; for methyl ester, the production yield was 98.46% at a temperature of 67.62 °C, a catalyst value of 1.1 wt. %, mixing intensity of 709.42 rpm, and an A/O of 6.09. Therefore, ELM-RSM increased the production yield by 3.6% for ethyl ester and 3.1% for methyl ester, compared with those for the experimental data. KW - Biodiesel KW - Optimierung KW - extreme learning machine KW - machine learning KW - response surface methodology KW - support vector machine KW - OA-Publikationsfonds2018 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20181025-38170 UR - https://www.mdpi.com/1996-1073/11/11/2889 IS - 11, 2889 SP - 1 EP - 20 PB - MDPI CY - Basel ER - TY - JOUR A1 - Faridmehr, Iman A1 - Tahir, Mamood Md. A1 - Lahmer, Tom T1 - Classification System for Semi-Rigid Beam-to-Column Connections JF - LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES 11 N2 - The current study attempts to recognise an adequate classification for a semi-rigid beam-to-column connection by investigating strength, stiffness and ductility. For this purpose, an experimental test was carried out to investigate the moment-rotation (M-theta) features of flush end-plate (FEP) connections including variable parameters like size and number of bolts, thickness of end-plate, and finally, size of beams and columns. The initial elastic stiffness and ultimate moment capacity of connections were determined by an extensive analytical procedure from the proposed method prescribed by ANSI/AISC 360-10, and Eurocode 3 Part 1-8 specifications. The behaviour of beams with partially restrained or semi-rigid connections were also studied by incorporating classical analysis methods. The results confirmed that thickness of the column flange and end-plate substantially govern over the initial rotational stiffness of of flush end-plate connections. The results also clearly showed that EC3 provided a more reliable classification index for flush end-plate (FEP) connections. The findings from this study make significant contributions to the current literature as the actual response characteristics of such connections are non-linear. Therefore, such semirigid behaviour should be used to for an analysis and design method. KW - Tragfähigkeit KW - Stütze KW - Träger KW - Beam-to-column connection; semi-rigid; flush end-plate connection; moment-rotation curve Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170401-30988 SP - 2152 EP - 2175 ER - TY - JOUR A1 - Faroughi, Maryam A1 - Karimimoshaver, Mehrdad A1 - Aram, Farshid A1 - Solgi, Ebrahim A1 - Mosavi, Amir A1 - Nabipour, Narjes A1 - Chau, Kwok-Wing T1 - Computational modeling of land surface temperature using remote sensing data to investigate the spatial arrangement of buildings and energy consumption relationship JF - Engineering Applications of Computational Fluid Mechanics N2 - The effect of urban form on energy consumption has been the subject of various studies around the world. Having examined the effect of buildings on energy consumption, these studies indicate that the physical form of a city has a notable impact on the amount of energy consumed in its spaces. The present study identified the variables that affected energy consumption in residential buildings and analyzed their effects on energy consumption in four neighborhoods in Tehran: Apadana, Bimeh, Ekbatan-phase I, and Ekbatan-phase II. After extracting the variables, their effects are estimated with statistical methods, and the results are compared with the land surface temperature (LST) remote sensing data derived from Landsat 8 satellite images taken in the winter of 2019. The results showed that physical variables, such as the size of buildings, population density, vegetation cover, texture concentration, and surface color, have the greatest impacts on energy usage. For the Apadana neighborhood, the factors with the most potent effect on energy consumption were found to be the size of buildings and the population density. However, for other neighborhoods, in addition to these two factors, a third factor was also recognized to have a significant effect on energy consumption. This third factor for the Bimeh, Ekbatan-I, and Ekbatan-II neighborhoods was the type of buildings, texture concentration, and orientation of buildings, respectively. KW - Fernerkung KW - Intelligente Stadt KW - Oberflächentemperatur KW - remote sensing KW - smart cities KW - Land surface temperature KW - energy consumption KW - residential buildings KW - urban morphology KW - urban sustainability Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200110-40585 UR - https://www.tandfonline.com/doi/full/10.1080/19942060.2019.1707711 VL - 2020 IS - Volume 14, No. 1 SP - 254 EP - 270 PB - Taylor & Francis ER - TY - JOUR A1 - Fathi, Sadegh A1 - Sajadzadeh, Hassan A1 - Mohammadi Sheshkal, Faezeh A1 - Aram, Farshid A1 - Pinter, Gergo A1 - Felde, Imre A1 - Mosavi, Amir T1 - The Role of Urban Morphology Design on Enhancing Physical Activity and Public Health JF - International Journal of Environmental Research and Public Health N2 - Along with environmental pollution, urban planning has been connected to public health. The research indicates that the quality of built environments plays an important role in reducing mental disorders and overall health. The structure and shape of the city are considered as one of the factors influencing happiness and health in urban communities and the type of the daily activities of citizens. The aim of this study was to promote physical activity in the main structure of the city via urban design in a way that the main form and morphology of the city can encourage citizens to move around and have physical activity within the city. Functional, physical, cultural-social, and perceptual-visual features are regarded as the most important and effective criteria in increasing physical activities in urban spaces, based on literature review. The environmental quality of urban spaces and their role in the physical activities of citizens in urban spaces were assessed by using the questionnaire tool and analytical network process (ANP) of structural equation modeling. Further, the space syntax method was utilized to evaluate the role of the spatial integration of urban spaces on improving physical activities. Based on the results, consideration of functional diversity, spatial flexibility and integration, security, and the aesthetic and visual quality of urban spaces plays an important role in improving the physical health of citizens in urban spaces. Further, more physical activities, including motivation for walking and the sense of public health and happiness, were observed in the streets having higher linkage and space syntax indexes with their surrounding texture. KW - Morphologie KW - Gesundheitswesen KW - Intelligente Stadt KW - Nachhaltigkeit KW - Gesundheitsinformationssystem KW - urban morphology KW - public health KW - physical activities KW - health KW - public space KW - urban health KW - smart cities KW - sustainability Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200402-41225 UR - https://www.mdpi.com/1660-4601/17/7/2359 VL - 2020 IS - Volume 17, Issue 7, 2359 PB - MDPI CY - Basel ER - TY - JOUR A1 - Ghasemi, Hamid A1 - Brighenti, Roberto A1 - Zhuang, Xiaoying A1 - Muthu, Jacob A1 - Rabczuk, Timon T1 - Optimum fiber content and distribution in fiber-reinforced solids using a reliability and NURBS based sequential optimization approach JF - Structural and Multidisciplinary Optimization N2 - Optimum _ber content and distribution in _ber-reinforced solids using a reliability and NURBS based sequential optimization approach KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 99 EP - 112 ER - TY - JOUR A1 - Ghasemi, Hamid A1 - Brighenti, Roberto A1 - Zhuang, Xiaoying A1 - Muthu, Jacob A1 - Rabczuk, Timon T1 - Optimization of fiber distribution in fiber reinforced composite by using NURBS functions JF - Computational Materials Science N2 - Optimization of fiber distribution in fiber reinforced composite by using NURBS functions KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 463 EP - 473 ER - TY - JOUR A1 - Ghasemi, Hamid A1 - Brighenti, Roberto A1 - Zhuang, Xiaoying A1 - Muthu, Jacob A1 - Rabczuk, Timon T1 - Sequential reliability based optimization of fiber content and dispersion in fiber reinforced composite by using NURBS finite elements JF - Structural and Multidisciplinary Optimization N2 - Sequential reliability based optimization of fiber content and dispersion in fiber reinforced composite by using NURBS finite elements KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 ER - TY - JOUR A1 - Ghasemi, Hamid A1 - Kerfriden, Pierre A1 - Bordas, Stéphane Pierre Alain A1 - Muthu, Jacob A1 - Zi, Goangseup A1 - Rabczuk, Timon T1 - Interfacial shear stress optimization in sandwich beams with polymeric core using nonuniform distribution of reinforcing ingredients JF - Composite Structures N2 - Interfacial shear stress optimization in sandwich beams with polymeric core using nonuniform distribution of reinforcing ingredients KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 221 EP - 230 ER - TY - JOUR A1 - Ghasemi, Hamid A1 - Rafiee, Roham A1 - Zhuang, Xiaoying A1 - Muthu, Jacob A1 - Rabczuk, Timon T1 - Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling JF - Computational Materials Science N2 - Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 295 EP - 305 ER - TY - JOUR A1 - Ghazvinei, Pezhman Taherei A1 - Darvishi, Hossein Hassanpour A1 - Mosavi, Amir A1 - Yusof, Khamaruzaman bin Wan A1 - Alizamir, Meysam A1 - Shamshirband, Shahaboddin A1 - Chau, Kwok-Wing T1 - Sugarcane growth prediction based on meteorological parameters using extreme learning machine and artificial neural network JF - Engineering Applications of Computational Fluid Mechanics N2 - Management strategies for sustainable sugarcane production need to deal with the increasing complexity and variability of the whole sugar system. Moreover, they need to accommodate the multiple goals of different industry sectors and the wider community. Traditional disciplinary approaches are unable to provide integrated management solutions, and an approach based on whole systems analysis is essential to bring about beneficial change to industry and the community. The application of this approach to water management, environmental management and cane supply management is outlined, where the literature indicates that the application of extreme learning machine (ELM) has never been explored in this realm. Consequently, the leading objective of the current research was set to filling this gap by applying ELM to launch swift and accurate model for crop production data-driven. The key learning has been the need for innovation both in the technical aspects of system function underpinned by modelling of sugarcane growth. Therefore, the current study is an attempt to establish an integrate model using ELM to predict the concluding growth amount of sugarcane. Prediction results were evaluated and further compared with artificial neural network (ANN) and genetic programming models. Accuracy of the ELM model is calculated using the statistics indicators of Root Means Square Error (RMSE), Pearson Coefficient (r), and Coefficient of Determination (R2) with promising results of 0.8, 0.47, and 0.89, respectively. The results also show better generalization ability in addition to faster learning curve. Thus, proficiency of the ELM for supplementary work on advancement of prediction model for sugarcane growth was approved with promising results. KW - Künstliche Intelligenz KW - Sustainable production KW - ELM KW - prediction KW - machine learning KW - sugarcane KW - estimation KW - growth mode KW - extreme learning machine KW - OA-Publikationsfonds2018 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20181017-38129 UR - https://www.tandfonline.com/doi/full/10.1080/19942060.2018.1526119 VL - 2018 IS - 12,1 SP - 738 EP - 749 PB - Taylor & Francis ER - TY - JOUR A1 - Ghorashi, Seyed Shahram A1 - Lahmer, Tom A1 - Bagherzadeh, Amir Saboor A1 - Zi, Goangseup A1 - Rabczuk, Timon T1 - A stochastic computational method based on goal-oriented error estimation for heterogeneous geological materials JF - Engineering Geology N2 - A stochastic computational method based on goal-oriented error estimation for heterogeneous geological materials KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2016 ER - TY - JOUR A1 - Ghorashi, Seyed Shahram A1 - Valizadeh, Navid A1 - Mohammadi, S. A1 - Rabczuk, Timon T1 - T-spline based XIGA for Fracture Analysis of Orthotropic Media JF - Computers & Structures N2 - T-spline based XIGA for Fracture Analysis of Orthotropic Media KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 138 EP - 146 ER - TY - JOUR A1 - Guo, Hongwei A1 - Zhuang, Xiaoying A1 - Chen, Pengwan A1 - Alajlan, Naif A1 - Rabczuk, Timon T1 - Analysis of three-dimensional potential problems in non-homogeneous media with physics-informed deep collocation method using material transfer learning and sensitivity analysis JF - Engineering with Computers N2 - In this work, we present a deep collocation method (DCM) for three-dimensional potential problems in non-homogeneous media. This approach utilizes a physics-informed neural network with material transfer learning reducing the solution of the non-homogeneous partial differential equations to an optimization problem. We tested different configurations of the physics-informed neural network including smooth activation functions, sampling methods for collocation points generation and combined optimizers. A material transfer learning technique is utilized for non-homogeneous media with different material gradations and parameters, which enhance the generality and robustness of the proposed method. In order to identify the most influential parameters of the network configuration, we carried out a global sensitivity analysis. Finally, we provide a convergence proof of our DCM. The approach is validated through several benchmark problems, also testing different material variations. KW - Deep learning KW - Kollokationsmethode KW - Collocation method KW - Potential problem KW - Activation function KW - Transfer learning Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220811-46764 UR - https://link.springer.com/article/10.1007/s00366-022-01633-6 VL - 2022 SP - 1 EP - 22 ER - TY - JOUR A1 - Göbel, Luise A1 - Lahmer, Tom A1 - Osburg, Andrea T1 - Uncertainty analysis in multiscale modeling of concrete based on continuum micromechanics JF - European Journal of Mechanics-A/Solids N2 - Uncertainty analysis in multiscale modeling of concrete based on continuum micromechanics KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2017 ER - TY - JOUR A1 - Hamdia, Khader A1 - Lahmer, Tom A1 - Nguyen-Thoi, T. A1 - Rabczuk, Timon T1 - Predicting The Fracture Toughness of PNCs: A Stochastic Approach Based on ANN and ANFIS JF - Computational Materials Science N2 - Predicting The Fracture Toughness of PNCs: A Stochastic Approach Based on ANN and ANFIS KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2015 SP - 304 EP - 313 ER - TY - JOUR A1 - Hanna, John T1 - Computational Modelling for the Effects of Capsular Clustering on Fracture of Encapsulation-Based Self-Healing Concrete Using XFEM and Cohesive Surface Technique JF - Applied Sciences N2 - The fracture of microcapsules is an important issue to release the healing agent for healing the cracks in encapsulation-based self-healing concrete. The capsular clustering generated from the concrete mixing process is considered one of the critical factors in the fracture mechanism. Since there is a lack of studies in the literature regarding this issue, the design of self-healing concrete cannot be made without an appropriate modelling strategy. In this paper, the effects of microcapsule size and clustering on the fractured microcapsules are studied computationally. A simple 2D computational modelling approach is developed based on the eXtended Finite Element Method (XFEM) and cohesive surface technique. The proposed model shows that the microcapsule size and clustering have significant roles in governing the load-carrying capacity and the crack propagation pattern and determines whether the microcapsule will be fractured or debonded from the concrete matrix. The higher the microcapsule circumferential contact length, the higher the load-carrying capacity. When it is lower than 25% of the microcapsule circumference, it will result in a greater possibility for the debonding of the microcapsule from the concrete. The greater the core/shell ratio (smaller shell thickness), the greater the likelihood of microcapsules being fractured. KW - Beton KW - Mikrokapsel KW - Rissausbreitung KW - Tragfähigkeit KW - self-healing concrete KW - microcapsule KW - capsular clustering KW - circumferential contact length KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220721-46717 UR - https://www.mdpi.com/2076-3417/12/10/5112 VL - 2022 IS - Volume 12, issue 10, article 5112 SP - 1 EP - 17 PB - MDPI CY - Basel ER - TY - JOUR A1 - Harirchian, Ehsan A1 - Isik, Ercan T1 - A Comparative Probabilistic Seismic Hazard Analysis for Eastern Turkey (Bitlis) Based on Updated Hazard Map and Its Effect on Regular RC Structures JF - Buildings N2 - Determining the earthquake hazard of any settlement is one of the primary studies for reducing earthquake damage. Therefore, earthquake hazard maps used for this purpose must be renewed over time. Turkey Earthquake Hazard Map has been used instead of Turkey Earthquake Zones Map since 2019. A probabilistic seismic hazard was performed by using these last two maps and different attenuation relationships for Bitlis Province (Eastern Turkey) were located in the Lake Van Basin, which has a high seismic risk. The earthquake parameters were determined by considering all districts and neighborhoods in the province. Probabilistic seismic hazard analyses were carried out for these settlements using seismic sources and four different attenuation relationships. The obtained values are compared with the design spectrum stated in the last two earthquake maps. Significant differences exist between the design spectrum obtained according to the different exceedance probabilities. In this study, adaptive pushover analyses of sample-reinforced concrete buildings were performed using the design ground motion level. Structural analyses were carried out using three different design spectra, as given in the last two seismic design codes and the mean spectrum obtained from attenuation relationships. Different design spectra significantly change the target displacements predicted for the performance levels of the buildings. KW - Erbeben KW - Schwellenwert KW - Seismic risk KW - Adaptive Pushover KW - Design Spectra KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20221028-47283 UR - https://www.mdpi.com/2075-5309/12/10/1573 VL - 2022 IS - Volume 12, issue 10, article 1573 SP - 1 EP - 19 PB - MDPI CY - Basel ER - TY - JOUR A1 - Harirchian, Ehsan A1 - Jadhav, Kirti A1 - Mohammad, Kifaytullah A1 - Aghakouchaki Hosseini, Seyed Ehsan A1 - Lahmer, Tom T1 - A Comparative Study of MCDM Methods Integrated with Rapid Visual Seismic Vulnerability Assessment of Existing RC Structures JF - Applied Sciences N2 - Recently, the demand for residence and usage of urban infrastructure has been increased, thereby resulting in the elevation of risk levels of human lives over natural calamities. The occupancy demand has rapidly increased the construction rate, whereas the inadequate design of structures prone to more vulnerability. Buildings constructed before the development of seismic codes have an additional susceptibility to earthquake vibrations. The structural collapse causes an economic loss as well as setbacks for human lives. An application of different theoretical methods to analyze the structural behavior is expensive and time-consuming. Therefore, introducing a rapid vulnerability assessment method to check structural performances is necessary for future developments. The process, as mentioned earlier, is known as Rapid Visual Screening (RVS). This technique has been generated to identify, inventory, and screen structures that are potentially hazardous. Sometimes, poor construction quality does not provide some of the required parameters; in this case, the RVS process turns into a tedious scenario. Hence, to tackle such a situation, multiple-criteria decision-making (MCDM) methods for the seismic vulnerability assessment opens a new gateway. The different parameters required by RVS can be taken in MCDM. MCDM evaluates multiple conflicting criteria in decision making in several fields. This paper has aimed to bridge the gap between RVS and MCDM. Furthermore, to define the correlation between these techniques, implementation of the methodologies from Indian, Turkish, and Federal Emergency Management Agency (FEMA) codes has been done. The effects of seismic vulnerability of structures have been observed and compared. KW - Erdbebensicherheit KW - damaged buildings KW - earthquake safety assessment KW - soft computing techniques KW - rapid visual screening KW - seismic risk estimation KW - Multi-criteria decision making KW - vulnerability assessment KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200918-42360 UR - https://www.mdpi.com/2076-3417/10/18/6411/htm VL - 2020 IS - Volume 10, issue 18, article 6411 PB - MDPI CY - Basel ER - TY - JOUR A1 - Harirchian, Ehsan A1 - Kumari, Vandana A1 - Jadhav, Kirti A1 - Raj Das, Rohan A1 - Rasulzade, Shahla A1 - Lahmer, Tom T1 - A Machine Learning Framework for Assessing Seismic Hazard Safety of Reinforced Concrete Buildings JF - Applied Sciences N2 - Although averting a seismic disturbance and its physical, social, and economic disruption is practically impossible, using the advancements in computational science and numerical modeling shall equip humanity to predict its severity, understand the outcomes, and equip for post-disaster management. Many buildings exist amidst the developed metropolitan areas, which are senile and still in service. These buildings were also designed before establishing national seismic codes or without the introduction of construction regulations. In that case, risk reduction is significant for developing alternatives and designing suitable models to enhance the existing structure’s performance. Such models will be able to classify risks and casualties related to possible earthquakes through emergency preparation. Thus, it is crucial to recognize structures that are susceptible to earthquake vibrations and need to be prioritized for retrofitting. However, each building’s behavior under seismic actions cannot be studied through performing structural analysis, as it might be unrealistic because of the rigorous computations, long period, and substantial expenditure. Therefore, it calls for a simple, reliable, and accurate process known as Rapid Visual Screening (RVS), which serves as a primary screening platform, including an optimum number of seismic parameters and predetermined performance damage conditions for structures. In this study, the damage classification technique was studied, and the efficacy of the Machine Learning (ML) method in damage prediction via a Support Vector Machine (SVM) model was explored. The ML model is trained and tested separately on damage data from four different earthquakes, namely Ecuador, Haiti, Nepal, and South Korea. Each dataset consists of varying numbers of input data and eight performance modifiers. Based on the study and the results, the ML model using SVM classifies the given input data into the belonging classes and accomplishes the performance on hazard safety evaluation of buildings. KW - Erdbeben KW - Vulnerability KW - Earthquake KW - damaged buildings KW - earthquake safety assessment KW - soft computing techniques KW - rapid visual screening KW - Machine Learning KW - vulnerability assessment KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20201022-42744 UR - https://www.mdpi.com/2076-3417/10/20/7153 VL - 2020 IS - Volume 10, issue 20, article 7153 PB - MDPI CY - Basel ER - TY - JOUR A1 - Harirchian, Ehsan A1 - Kumari, Vandana A1 - Jadhav, Kirti A1 - Rasulzade, Shahla A1 - Lahmer, Tom A1 - Raj Das, Rohan T1 - A Synthesized Study Based on Machine Learning Approaches for Rapid Classifying Earthquake Damage Grades to RC Buildings JF - Applied Sciences N2 - A vast number of existing buildings were constructed before the development and enforcement of seismic design codes, which run into the risk of being severely damaged under the action of seismic excitations. This poses not only a threat to the life of people but also affects the socio-economic stability in the affected area. Therefore, it is necessary to assess such buildings’ present vulnerability to make an educated decision regarding risk mitigation by seismic strengthening techniques such as retrofitting. However, it is economically and timely manner not feasible to inspect, repair, and augment every old building on an urban scale. As a result, a reliable rapid screening methods, namely Rapid Visual Screening (RVS), have garnered increasing interest among researchers and decision-makers alike. In this study, the effectiveness of five different Machine Learning (ML) techniques in vulnerability prediction applications have been investigated. The damage data of four different earthquakes from Ecuador, Haiti, Nepal, and South Korea, have been utilized to train and test the developed models. Eight performance modifiers have been implemented as variables with a supervised ML. The investigations on this paper illustrate that the assessed vulnerability classes by ML techniques were very close to the actual damage levels observed in the buildings. KW - Maschinelles Lernen KW - Neuronales Netz KW - Machine learning KW - Building safety assessment KW - artificial neural networks KW - supervised learning KW - damaged buildings KW - rapid classification KW - OA-Publikationsfonds2021 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210818-44853 UR - https://www.mdpi.com/2076-3417/11/16/7540 VL - 2021 IS - Volume 11, issue 16, article 7540 SP - 1 EP - 33 PB - MDPI CY - Basel ER - TY - JOUR A1 - Harirchian, Ehsan A1 - Lahmer, Tom T1 - Improved Rapid Visual Earthquake Hazard Safety Evaluation of Existing Buildings Using a Type-2 Fuzzy Logic Model JF - Applied Sciences N2 - Rapid Visual Screening (RVS) is a procedure that estimates structural scores for buildings and prioritizes their retrofit and upgrade requirements. Despite the speed and simplicity of RVS, many of the collected parameters are non-commensurable and include subjectivity due to visual observations. This might cause uncertainties in the evaluation, which emphasizes the use of a fuzzy-based method. This study aims to propose a novel RVS methodology based on the interval type-2 fuzzy logic system (IT2FLS) to set the priority of vulnerable building to undergo detailed assessment while covering uncertainties and minimizing their effects during evaluation. The proposed method estimates the vulnerability of a building, in terms of Damage Index, considering the number of stories, age of building, plan irregularity, vertical irregularity, building quality, and peak ground velocity, as inputs with a single output variable. Applicability of the proposed method has been investigated using a post-earthquake damage database of reinforced concrete buildings from the Bingöl and Düzce earthquakes in Turkey. KW - Fuzzy-Logik KW - Erdbeben KW - Fuzzy Logic KW - Rapid Visual Screening KW - Vulnerability assessment KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200331-41161 UR - https://www.mdpi.com/2076-3417/10/7/2375 VL - 2020 IS - Volume 10, Issue 3, 2375 PB - MDPI CY - Basel ER - TY - JOUR A1 - Harirchian, Ehsan A1 - Lahmer, Tom A1 - Buddhiraju, Sreekanth A1 - Mohammad, Kifaytullah A1 - Mosavi, Amir T1 - Earthquake Safety Assessment of Buildings through Rapid Visual Screening JF - Buildings N2 - Earthquake is among the most devastating natural disasters causing severe economical, environmental, and social destruction. Earthquake safety assessment and building hazard monitoring can highly contribute to urban sustainability through identification and insight into optimum materials and structures. While the vulnerability of structures mainly depends on the structural resistance, the safety assessment of buildings can be highly challenging. In this paper, we consider the Rapid Visual Screening (RVS) method, which is a qualitative procedure for estimating structural scores for buildings suitable for medium- to high-seismic cases. This paper presents an overview of the common RVS methods, i.e., FEMA P-154, IITK-GGSDMA, and EMPI. To examine the accuracy and validation, a practical comparison is performed between their assessment and observed damage of reinforced concrete buildings from a street survey in the Bingöl region, Turkey, after the 1 May 2003 earthquake. The results demonstrate that the application of RVS methods for preliminary damage estimation is a vital tool. Furthermore, the comparative analysis showed that FEMA P-154 creates an assessment that overestimates damage states and is not economically viable, while EMPI and IITK-GGSDMA provide more accurate and practical estimation, respectively. KW - Maschinelles Lernen KW - Machine learning KW - Erdbeben KW - buildings KW - earthquake safety assessment KW - earthquake KW - extreme events KW - seismic assessment KW - natural hazard KW - mitigation KW - rapid visual screening Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200331-41153 UR - https://www.mdpi.com/2075-5309/10/3/51 VL - 2020 IS - Volume 10, Issue 3 PB - MDPI ER - TY - JOUR A1 - Harirchian, Ehsan A1 - Lahmer, Tom A1 - Kumari, Vandana A1 - Jadhav, Kirti T1 - Application of Support Vector Machine Modeling for the Rapid Seismic Hazard Safety Evaluation of Existing Buildings JF - Energies N2 - The economic losses from earthquakes tend to hit the national economy considerably; therefore, models that are capable of estimating the vulnerability and losses of future earthquakes are highly consequential for emergency planners with the purpose of risk mitigation. This demands a mass prioritization filtering of structures to identify vulnerable buildings for retrofitting purposes. The application of advanced structural analysis on each building to study the earthquake response is impractical due to complex calculations, long computational time, and exorbitant cost. This exhibits the need for a fast, reliable, and rapid method, commonly known as Rapid Visual Screening (RVS). The method serves as a preliminary screening platform, using an optimum number of seismic parameters of the structure and predefined output damage states. In this study, the efficacy of the Machine Learning (ML) application in damage prediction through a Support Vector Machine (SVM) model as the damage classification technique has been investigated. The developed model was trained and examined based on damage data from the 1999 Düzce Earthquake in Turkey, where the building’s data consists of 22 performance modifiers that have been implemented with supervised machine learning. KW - Erdbeben KW - Maschinelles Lernen KW - earthquake vulnerability assessment KW - rapid visual screening KW - machine learning KW - support vector machine KW - buildings KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200707-41915 UR - https://www.mdpi.com/1996-1073/13/13/3340 VL - 2020 IS - volume 13, issue 13, 3340 PB - MDPI CY - Basel ER - TY - JOUR A1 - Harirchian, Ehsan A1 - Lahmer, Tom A1 - Rasulzade, Shahla T1 - Earthquake Hazard Safety Assessment of Existing Buildings Using Optimized Multi-Layer Perceptron Neural Network JF - Energies N2 - The latest earthquakes have proven that several existing buildings, particularly in developing countries, are not secured from damages of earthquake. A variety of statistical and machine-learning approaches have been proposed to identify vulnerable buildings for the prioritization of retrofitting. The present work aims to investigate earthquake susceptibility through the combination of six building performance variables that can be used to obtain an optimal prediction of the damage state of reinforced concrete buildings using artificial neural network (ANN). In this regard, a multi-layer perceptron network is trained and optimized using a database of 484 damaged buildings from the Düzce earthquake in Turkey. The results demonstrate the feasibility and effectiveness of the selected ANN approach to classify concrete structural damage that can be used as a preliminary assessment technique to identify vulnerable buildings in disaster risk-management programs. KW - Erdbeben KW - Maschinelles Lernen KW - earthquake damage KW - seismic vulnerability KW - artificial neural network KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200504-41575 UR - https://www.mdpi.com/1996-1073/13/8/2060/htm VL - 2020 IS - Volume 13, Issue 8, 2060 PB - MDPI CY - Basel ER - TY - JOUR A1 - Hassannataj Joloudari, Javad A1 - Hassannataj Joloudari, Edris A1 - Saadatfar, Hamid A1 - GhasemiGol, Mohammad A1 - Razavi, Seyyed Mohammad A1 - Mosavi, Amir A1 - Nabipour, Narjes A1 - Shamshirband, Shahaboddin A1 - Nadai, Laszlo T1 - Coronary Artery Disease Diagnosis: Ranking the Significant Features Using a Random Trees Model JF - International Journal of Environmental Research and Public Health, IJERPH N2 - Heart disease is one of the most common diseases in middle-aged citizens. Among the vast number of heart diseases, coronary artery disease (CAD) is considered as a common cardiovascular disease with a high death rate. The most popular tool for diagnosing CAD is the use of medical imaging, e.g., angiography. However, angiography is known for being costly and also associated with a number of side effects. Hence, the purpose of this study is to increase the accuracy of coronary heart disease diagnosis through selecting significant predictive features in order of their ranking. In this study, we propose an integrated method using machine learning. The machine learning methods of random trees (RTs), decision tree of C5.0, support vector machine (SVM), and decision tree of Chi-squared automatic interaction detection (CHAID) are used in this study. The proposed method shows promising results and the study confirms that the RTs model outperforms other models. KW - Maschinelles Lernen KW - Machine learning KW - Deep learning KW - coronary artery disease KW - heart disease diagnosis KW - health informatics KW - data science KW - big data KW - predictive model KW - ensemble model KW - random forest KW - industry 4.0 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200213-40819 UR - https://www.mdpi.com/1660-4601/17/3/731 VL - 2020 IS - Volume 17, Issue 3, 731 PB - MDPI ER - TY - JOUR A1 - Hauck, A. A1 - Lahmer, Tom A1 - Kaltenbacher, Manfred T1 - Enhanced homogenization technique for magnetomechanical systems using the generalized finite element method JF - COMPEL: The international journal for computation and mathematics in electrical and electronic engineering N2 - Enhanced homogenization technique for magnetomechanical systems using the generalized finite element method KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2009 SP - 935 EP - 947 ER - TY - JOUR A1 - Higuchi, Shoko A1 - Macke, M. T1 - Cost-benefit based optimization of maintenance interventions for deteriorating structures JF - Structural Engineering/Earthquake Engineering N2 - Cost-benefit based optimization of maintenance interventions for deteriorating structures KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2007 SP - 131 EP - 147 ER - TY - JOUR A1 - Higuchi, Shoko A1 - Macke, M. T1 - Cost-benefit based optimization of maintenance interventions for deteriorating structures JF - Doboku Gakkai Ronbunshuu A N2 - Cost-benefit based optimization of maintenance interventions for deteriorating structures KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2007 SP - 727 EP - 743 ER - TY - JOUR A1 - Higuchi, Shoko A1 - Macke, M. T1 - Cost-benefit analysis for the optimal rehabilitation of deteriorating structures JF - Structural Safety N2 - Cost-benefit analysis for the optimal rehabilitation of deteriorating structures KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2008 SP - 291 EP - 306 ER - TY - JOUR A1 - Hoffmeyer, J. A1 - Döring, R. A1 - Vormwald, Michael T1 - Kurzrisswachstum bei mehrachsig nichtproportionaler Beanspruchung JF - Materialwissenschaft und Werkstofftechnik N2 - Kurzrisswachstum bei mehrachsig nichtproportionaler Beanspruchung KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2001 SP - 329 EP - 336 ER - TY - JOUR A1 - Homaei, Mohammad Hossein A1 - Soleimani, Faezeh A1 - Shamshirband, Shahaboddin A1 - Mosavi, Amir A1 - Nabipour, Narjes A1 - Varkonyi-Koczy, Annamaria R. T1 - An Enhanced Distributed Congestion Control Method for Classical 6LowPAN Protocols Using Fuzzy Decision System JF - IEEE Access N2 - The classical Internet of things routing and wireless sensor networks can provide more precise monitoring of the covered area due to the higher number of utilized nodes. Because of the limitations in shared transfer media, many nodes in the network are prone to the collision in simultaneous transmissions. Medium access control protocols are usually more practical in networks with low traffic, which are not subjected to external noise from adjacent frequencies. There are preventive, detection and control solutions to congestion management in the network which are all the focus of this study. In the congestion prevention phase, the proposed method chooses the next step of the path using the Fuzzy decision-making system to distribute network traffic via optimal paths. In the congestion detection phase, a dynamic approach to queue management was designed to detect congestion in the least amount of time and prevent the collision. In the congestion control phase, the back-pressure method was used based on the quality of the queue to decrease the probability of linking in the pathway from the pre-congested node. The main goals of this study are to balance energy consumption in network nodes, reducing the rate of lost packets and increasing quality of service in routing. Simulation results proved the proposed Congestion Control Fuzzy Decision Making (CCFDM) method was more capable in improving routing parameters as compared to recent algorithms. KW - Internet der dinge KW - IOT KW - Internet of things KW - wireless sensor network KW - congestion control KW - fuzzy decision making KW - back-pressure Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200213-40805 UR - https://ieeexplore.ieee.org/document/8967114 IS - volume 8 SP - 20628 EP - 20645 PB - IEEE ER - TY - JOUR A1 - Häfner, Stefan A1 - Eckardt, Stefan A1 - Luther, Torsten A1 - Könke, Carsten T1 - Mesoscale modeling of concrete: Geometry and numerics JF - Computers and Structures N2 - Mesoscale modeling of concrete: Geometry and numerics KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2006 SP - 450 EP - 461 ER - TY - JOUR A1 - Ilyani Akmar, A.B. A1 - Kramer, O. A1 - Rabczuk, Timon T1 - Multi-objective evolutionary optimization of sandwich structures: An evaluation by elitist non-dominated sorting evolution strategy JF - American Journal of Engineering and Applied Sciences N2 - In this study, an application of evolutionary multi-objective optimization algorithms on the optimization of sandwich structures is presented. The solution strategy is known as Elitist Non-Dominated Sorting Evolution Strategy (ENSES) wherein Evolution Strategies (ES) as Evolutionary Algorithm (EA) in the elitist Non-dominated Sorting Genetic algorithm (NSGA-II) procedure. Evolutionary algorithm seems a compatible approach to resolve multi-objective optimization problems because it is inspired by natural evolution, which closely linked to Artificial Intelligence (AI) techniques and elitism has shown an important factor for improving evolutionary multi-objective search. In order to evaluate the notion of performance by ENSES, the well-known study case of sandwich structures are reconsidered. For Case 1, the goals of the multi-objective optimization are minimization of the deflection and the weight of the sandwich structures. The length, the core and skin thicknesses are the design variables of Case 1. For Case 2, the objective functions are the fabrication cost, the beam weight and the end deflection of the sandwich structures. There are four design variables i.e., the weld height, the weld length, the beam depth and the beam width in Case 2. Numerical results are presented in terms of Paretooptimal solutions for both evaluated cases. KW - Optimierung KW - Stahlbau KW - Multi-objective Evolutionary Optimization, Elitist Non- Dominated Sorting Evolution Strategy (ENSES), Sandwich Structure, Pareto-Optimal Solutions, Evolutionary Algorithm Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170418-31402 SP - 185 EP - 201 ER - TY - JOUR A1 - Ilyani Akmar, A.B. A1 - Lahmer, Tom A1 - Bordas, Stéphane Pierre Alain A1 - Beex, L.A.A. A1 - Rabczuk, Timon T1 - Uncertainty quantification of dry woven fabrics: A sensitivity analysis on material properties JF - Composite Structures N2 - Uncertainty quantification of dry woven fabrics: A sensitivity analysis on material properties KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.compstruct.2014.04.014 SP - 1 EP - 17 ER - TY - JOUR A1 - Işık, Ercan A1 - Büyüksaraç, Aydın A1 - Levent Ekinci, Yunus A1 - Aydın, Mehmet Cihan A1 - Harirchian, Ehsan T1 - The Effect of Site-Specific Design Spectrum on Earthquake-Building Parameters: A Case Study from the Marmara Region (NW Turkey) JF - Applied Sciences N2 - The Marmara Region (NW Turkey) has experienced significant earthquakes (M > 7.0) to date. A destructive earthquake is also expected in the region. To determine the effect of the specific design spectrum, eleven provinces located in the region were chosen according to the Turkey Earthquake Building Code updated in 2019. Additionally, the differences between the previous and updated regulations of the country were investigated. Peak Ground Acceleration (PGA) and Peak Ground Velocity (PGV) were obtained for each province by using earthquake ground motion levels with 2%, 10%, 50%, and 68% probability of exceedance in 50-year periods. The PGA values in the region range from 0.16 to 0.7 g for earthquakes with a return period of 475 years. For each province, a sample of a reinforced-concrete building having two different numbers of stories with the same ground and structural characteristics was chosen. Static adaptive pushover analyses were performed for the sample reinforced-concrete building using each province’s design spectrum. The variations in the earthquake and structural parameters were investigated according to different geographical locations. It was determined that the site-specific design spectrum significantly influences target displacements for performance-based assessments of buildings due to seismicity characteristics of the studied geographic location. KW - Erdbeben KW - earthquake KW - site-specific spectrum KW - Marmara Region KW - seismic hazard analysis KW - adaptive pushover KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20201022-42758 UR - https://www.mdpi.com/2076-3417/10/20/7247 VL - 2020 IS - Volume 10, issue 20, article 7247 PB - MDPI CY - Basel ER - TY - JOUR A1 - Jamshidian, M. A1 - Rabczuk, Timon T1 - Phase field modelling of stressed grain growth: Analytical study and the effect of microstructural length scale JF - Journal of Computational Physics N2 - Phase field modelling of stressed grain growth: Analytical study and the effect of microstructural length scale KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 23 EP - 35 ER - TY - JOUR A1 - Jia, Yue A1 - Anitescu, Cosmin A1 - Ghorashi, Seyed Shahram A1 - Rabczuk, Timon A1 - Dias-da-Costa, D. T1 - Extended Isogeometric Analysis for Material Interface Problems JF - Journal of Applied Mathematics N2 - Extended Isogeometric Analysis for Material Interface Problems KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 ER - TY - JOUR A1 - Jia, Yue A1 - Zhang, Yongjie A1 - Rabczuk, Timon T1 - A Novel Dynamic Multilevel Technique for Image Registration JF - Computers and Mathematics with Applications N2 - A Novel Dynamic Multilevel Technique for Image Registration KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 ER - TY - JOUR A1 - Jiang, Jin-Wu A1 - Park, Harold S. A1 - Gall, K. A1 - Leach, A. A1 - Rabczuk, Timon T1 - A Surface Stacking Fault Energy Approach to Predicting Defect Nucleation in Surface-Dominated Nanostructures JF - Journal of the Mechanics and Physics of Solids N2 - A Surface Stacking Fault Energy Approach to Predicting Defect Nucleation in Surface-Dominated Nanostructures KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 ER - TY - JOUR A1 - Jiang, Jin-Wu A1 - Park, Harold S. A1 - Rabczuk, Timon T1 - Enhancing the mass sensitivity of graphene nanoresonators via nonlinear oscillations: The effective strain mechanism JF - Nanotechnology N2 - Enhancing the mass sensitivity of graphene nanoresonators via nonlinear oscillations: The effective strain mechanism KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 ER - TY - JOUR A1 - Jiang, Jin-Wu A1 - Park, Harold S. A1 - Rabczuk, Timon T1 - MoS2 nanoresonators: intrinsically better than graphene? JF - Nanoscale N2 - MoS2 nanoresonators: intrinsically better than graphene? KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 3618 EP - 3625 ER - TY - JOUR A1 - Jiang, Jin-Wu A1 - Rabczuk, Timon T1 - Mechanical Oscillation of Kinked Silicon Nanowires: a Natural Nanoscale Spring JF - Applied Physics Letters N2 - Mechanical Oscillation of Kinked Silicon Nanowires: a Natural Nanoscale Spring KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 ER - TY - JOUR A1 - Jiang, Jin-Wu A1 - Rabczuk, Timon T1 - Modulation of Thermal Conductivity in kinked Silicon Nanowires: Phonon interchanging and pinching effects or Reduction of thermal conductivity in kinked silicon nanowire superlattices JF - Nano Letters N2 - Modulation of Thermal Conductivity in kinked Silicon Nanowires: Phonon interchanging and pinching effects or Reduction of thermal conductivity in kinked silicon nanowire superlattices KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 ER - TY - JOUR A1 - Jiang, Jin-Wu A1 - Rabczuk, Timon A1 - Park, Harold S. T1 - A Stillinger-Weber Potential for Single-Layer Black Phosphorus, and the Importance of Cross-Pucker Interactions for Negative Poisson's Ratio and Edge Stress-Induced Bending JF - Nanoscale N2 - The distinguishing structural feature of single-layered black phosphorus is its puckered structure, which leads to many novel physical properties. In this work, we first present a new parameterization of the Stillinger–Weber potential for single-layered black phosphorus. In doing so, we reveal the importance of a cross-pucker interaction term in capturing its unique mechanical properties, such as a negative Poisson's ratio. In particular, we show that the cross-pucker interaction enables the pucker to act as a re-entrant hinge, which expands in the lateral direction when it is stretched in the longitudinal direction. As a consequence, single-layered black phosphorus has a negative Poisson's ratio in the direction perpendicular to the atomic plane. As an additional demonstration of the impact of the cross-pucker interaction, we show that it is also the key factor that enables capturing the edge stress-induced bending of single-layered black phosphorus that has been reported in ab initio calculations. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 U6 - http://dx.doi.org/10.1039/C4NR07341J ER - TY - JOUR A1 - Jiang, Jin-Wu A1 - Wang, Bing-Shen A1 - Rabczuk, Timon T1 - Acoustic and breathing phonon modes in bilayer graphene with Moire-acute patterns JF - Applied Physics Letters N2 - The lattice dynamics properties are investigated for twisting bilayer graphene. There are big jumps for the inter-layer potential at twisting angle θ=0° and 60°, implying the stability of Bernal-stacking and the instability of AA-stacking structures, while a long platform in [8,55]° indicates the ease of twisting bilayer graphene in this wide angle range. Significant frequency shifts are observed for the z breathing mode around θ=0° and 60°, while the frequency is a constant in a wide range [8,55]°. Using the z breathing mode, a mechanical nanoresonator is proposed to operate on a robust resonant frequency in terahertz range. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1063/1.4735246 ER - TY - JOUR A1 - Jiang, Jin-Wu A1 - Wang, Bing-Shen A1 - Rabczuk, Timon T1 - Why twisting angles are diverse in graphene Moir’e patterns? JF - Journal of Applied Physics N2 - Why twisting angles are diverse in graphene Moir’e patterns? KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 ER - TY - JOUR A1 - Jiang, Jin-Wu A1 - Wang, Bing-Shen A1 - Rabczuk, Timon T1 - Phonon modes in single-walled molybdenum disulphide nanotubes: lattice dynamics calculation and molecular dynamics simulation JF - Nanotechnology N2 - Phonon modes in single-walled molybdenum disulphide nanotubes: lattice dynamics calculation and molecular dynamics simulation KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 ER - TY - JOUR A1 - Jiang, Jin-Wu A1 - Zhao, Jun-Hua A1 - Rabczuk, Timon T1 - Size-Sensitive Young’s Modulus of Kinked Silicon Nanowires JF - Nanotechnology N2 - We perform both classical molecular dynamics simulations and beam model calculations to investigate the Young's modulus of kinked silicon nanowires (KSiNWs). The Young's modulus is found to be highly sensitive to the arm length of the kink and is essentially inversely proportional to the arm length. The mechanism underlying the size dependence is found to be the interplay between the kink angle potential and the arm length potential, where we obtain an analytic relationship between the Young's modulus and the arm length of the KSiNW. Our results provide insight into the application of this novel building block in nanomechanical devices. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 U6 - http://dx.doi.org/10.1088/0957-4484/24/18/185702 ER - TY - JOUR A1 - Jiang, Jin-Wu A1 - Zhao, Jun-Hua A1 - Zhou, K. A1 - Rabczuk, Timon T1 - Superior thermal conductivity and extremely high mechanical strength in polyethylene chains from ab initio calculation JF - Journal of Applied Physics N2 - The upper limit of the thermal conductivity and the mechanical strength are predicted for the polyethylene chain, by performing the ab initio calculation and applying the quantum mechanical non-equilibrium Green’s function approach. Specially, there are two main findings from our calculation: (1) the thermal conductivity can reach a high value of 310 Wm−1 K−1 in a 100 nm polyethylene chain at room temperature and the thermal conductivity increases with the length of the chain; (2) the Young’s modulus in the polyethylene chain is as high as 374.5 GPa, and the polyethylene chain can sustain 32.85%±0.05% (ultimate) strain before undergoing structural phase transition into gaseous ethylene. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1063/1.4729489 ER -