TY - JOUR A1 - Simpson, R. A1 - Bordas, Stéphane Pierre Alain A1 - Trevelyan, J. A1 - Kerfriden, Pierre A1 - Rabczuk, Timon T1 - An Isogeometric Boundary Element Method for elastostatic analysis JF - Computer Methods in Applied Mechanics and Engineering N2 - The concept of isogeometric analysis, where functions that are used to describe geometry in CAD software are used to approximate the unknown fields in numerical simulations, has received great attention in recent years. The method has the potential to have profound impact on engineering design, since the task of meshing, which in some cases can add significant overhead, has been circumvented. Much of the research effort has been focused on finite element implementations of the isogeometric concept, but at present, little has been seen on the application to the Boundary Element Method. The current paper proposes an Isogeometric Boundary Element Method (BEM), which we term IGABEM, applied to two-dimensional elastostatic problems using Non-Uniform Rational B-Splines (NURBS). We find it is a natural fit with the isogeometric concept since both the NURBS approximation and BEM deal with quantities entirely on the boundary. The method is verified against analytical solutions where it is seen that superior accuracies are achieved over a conventional quadratic isoparametric BEM implementation. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.cma.2011.08.008 ER - TY - JOUR A1 - Chau-Dinh, T. A1 - Zi, Goangseup A1 - Lee, P.S. A1 - Song, Jeong-Hoon A1 - Rabczuk, Timon T1 - Phantom-node method for shell models with arbitrary cracks JF - Computers & Structures N2 - A phantom-node method is developed for three-node shell elements to describe cracks. This method can treat arbitrary cracks independently of the mesh. The crack may cut elements completely or partially. Elements are overlapped on the position of the crack, and they are partially integrated to implement the discontinuous displacement across the crack. To consider the element containing a crack tip, a new kinematical relation between the overlapped elements is developed. There is no enrichment function for the discontinuous displacement field. Several numerical examples are presented to illustrate the proposed method. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.compstruc.2011.10.021 ER - TY - JOUR A1 - Talebi, Hossein A1 - Samaniego, C. A1 - Samaniego, Esteban A1 - Rabczuk, Timon T1 - On the numerical stability and mass-lumping schemes for explicit enriched meshfree methods JF - International Journal for Numerical Methods in Engineering N2 - Meshfree methods (MMs) such as the element free Galerkin (EFG)method have gained popularity because of some advantages over other numerical methods such as the finite element method (FEM). A group of problems that have attracted a great deal of attention from the EFG method community includes the treatment of large deformations and dealing with strong discontinuities such as cracks. One efficient solution to model cracks is adding special enrichment functions to the standard shape functions such as extended FEM, within the FEM context, and the cracking particles method, based on EFG method. It is well known that explicit time integration in dynamic applications is conditionally stable. Furthermore, in enriched methods, the critical time step may tend to very small values leading to computationally expensive simulations. In this work, we study the stability of enriched MMs and propose two mass-lumping strategies. Then we show that the critical time step for enriched MMs based on lumped mass matrices is of the same order as the critical time step of MMs without enrichment. Moreover, we show that, in contrast to extended FEM, even with a consistent mass matrix, the critical time step does not vanish even when the crack directly crosses a node. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1002/nme.3275 SP - 1009 EP - 1027 ER - TY - JOUR A1 - Chen, Lei A1 - Rabczuk, Timon A1 - Liu, G.R. A1 - Zeng, K.Y. A1 - Kerfriden, Pierre A1 - Bordas, Stéphane Pierre Alain T1 - Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth JF - Computer Methods in Applied Mechanics and Engineering N2 - This paper presents a strain smoothing procedure for the extended finite element method (XFEM). The resulting “edge-based” smoothed extended finite element method (ESm-XFEM) is tailored to linear elastic fracture mechanics and, in this context, to outperform the standard XFEM. In the XFEM, the displacement-based approximation is enriched by the Heaviside and asymptotic crack tip functions using the framework of partition of unity. This eliminates the need for the mesh alignment with the crack and re-meshing, as the crack evolves. Edge-based smoothing (ES) relies on a generalized smoothing operation over smoothing domains associated with edges of simplex meshes, and produces a softening effect leading to a close-to-exact stiffness, “super-convergence” and “ultra-accurate” solutions. The present method takes advantage of both the ES-FEM and the XFEM. Thanks to the use of strain smoothing, the subdivision of elements intersected by discontinuities and of integrating the (singular) derivatives of the approximation functions is suppressed via transforming interior integration into boundary integration. Numerical examples show that the proposed method improves significantly the accuracy of stress intensity factors and achieves a near optimal convergence rate in the energy norm even without geometrical enrichment or blending correction. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.cma.2011.08.013 ER - TY - JOUR A1 - Nguyen-Xuan, Hung A1 - Rabczuk, Timon A1 - Nguyen-Thoi, T. A1 - Tran, T. A1 - Nguyen-Thanh, Nhon T1 - Computation of limit and shakedown loads using a node-based smoothed finite element method JF - International Journal for Numerical Methods in Engineering N2 - This paper presents a novel numerical procedure for computing limit and shakedown loads of structures using a node-based smoothed FEM in combination with a primal–dual algorithm. An associated primal–dual form based on the von Mises yield criterion is adopted. The primal-dual algorithm together with a Newton-like iteration are then used to solve this associated primal–dual form to determine simultaneously both approximate upper and quasi-lower bounds of the plastic collapse limit and the shakedown limit. The present formulation uses only linear approximations and its implementation into finite element programs is quite simple. Several numerical examples are given to show the reliability, accuracy, and generality of the present formulation compared with other available methods. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1002/nme.3317 SP - 287 EP - 310 ER - TY - JOUR A1 - Areias, Pedro A1 - Rabczuk, Timon A1 - Dias-da-Costa, D. A1 - Piresh, E.B. T1 - Implicit solutions with consistent additive and multiplicative components JF - Finite Elements in Analysis and Design N2 - This work describes an algorithm and corresponding software for incorporating general nonlinear multiple-point equality constraints in a implicit sparse direct solver. It is shown that direct addressing of sparse matrices is possible in general circumstances, circumventing the traditional linear or binary search for introducing (generalized) constituents to a sparse matrix. Nested and arbitrarily interconnected multiple-point constraints are introduced by processing of multiplicative constituents with a built-in topological ordering of the resulting directed graph. A classification of discretization methods is performed and some re-classified problems are described and solved under this proposed perspective. The dependence relations between solution methods, algorithms and constituents becomes apparent. Fracture algorithms can be naturally casted in this framework. Solutions based on control equations are also directly incorporated as equality constraints. We show that arbitrary constituents can be used as long as the resulting directed graph is acyclic. It is also shown that graph partitions and orderings should be performed in the innermost part of the algorithm, a fact with some peculiar consequences. The core of our implicit code is described, specifically new algorithms for direct access of sparse matrices (by means of the clique structure) and general constituent processing. It is demonstrated that the graph structure of the second derivatives of the equality constraints are cliques (or pseudo-elements) and are naturally included as such. A complete algorithm is presented which allows a complete automation of equality constraints, avoiding the need of pre-sorting. Verification applications in four distinct areas are shown: single and multiple rigid body dynamics, solution control and computational fracture. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.finel.2012.03.007 SP - 15 EP - 31 ER - TY - JOUR A1 - Jiang, Jin-Wu A1 - Zhao, Jun-Hua A1 - Zhou, K. A1 - Rabczuk, Timon T1 - Superior thermal conductivity and extremely high mechanical strength in polyethylene chains from ab initio calculation JF - Journal of Applied Physics N2 - The upper limit of the thermal conductivity and the mechanical strength are predicted for the polyethylene chain, by performing the ab initio calculation and applying the quantum mechanical non-equilibrium Green’s function approach. Specially, there are two main findings from our calculation: (1) the thermal conductivity can reach a high value of 310 Wm−1 K−1 in a 100 nm polyethylene chain at room temperature and the thermal conductivity increases with the length of the chain; (2) the Young’s modulus in the polyethylene chain is as high as 374.5 GPa, and the polyethylene chain can sustain 32.85%±0.05% (ultimate) strain before undergoing structural phase transition into gaseous ethylene. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1063/1.4729489 ER - TY - JOUR A1 - Jiang, Jin-Wu A1 - Wang, Bing-Shen A1 - Rabczuk, Timon T1 - Acoustic and breathing phonon modes in bilayer graphene with Moire-acute patterns JF - Applied Physics Letters N2 - The lattice dynamics properties are investigated for twisting bilayer graphene. There are big jumps for the inter-layer potential at twisting angle θ=0° and 60°, implying the stability of Bernal-stacking and the instability of AA-stacking structures, while a long platform in [8,55]° indicates the ease of twisting bilayer graphene in this wide angle range. Significant frequency shifts are observed for the z breathing mode around θ=0° and 60°, while the frequency is a constant in a wide range [8,55]°. Using the z breathing mode, a mechanical nanoresonator is proposed to operate on a robust resonant frequency in terahertz range. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1063/1.4735246 ER - TY - JOUR A1 - Talebi, Hossein A1 - Zi, Goangseup A1 - Silani, Mohammad A1 - Samaniego, Esteban A1 - Rabczuk, Timon T1 - A simple circular cell method for multilevel finite element analysis JF - Journal of Applied Mathematics N2 - A simple multiscale analysis framework for heterogeneous solids based on a computational homogenization technique is presented. The macroscopic strain is linked kinematically to the boundary displacement of a circular or spherical representative volume which contains the microscopic information of the material. The macroscopic stress is obtained from the energy principle between the macroscopic scale and the microscopic scale. This new method is applied to several standard examples to show its accuracy and consistency of the method proposed. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1155/2012/526846 ER - TY - JOUR A1 - Nguyen-Vinh, H. A1 - Bakar, I. A1 - Msekh, Mohammed Abdulrazzak A1 - Song, Jeong-Hoon A1 - Muthu, Jacob A1 - Zi, Goangseup A1 - Le, P. A1 - Bordas, Stéphane Pierre Alain A1 - Simpson, R. A1 - Natarajan, S. A1 - Lahmer, Tom A1 - Rabczuk, Timon T1 - Extended Finite Element Method for Dynamic Fracture of Piezo-Electric Materials JF - Engineering Fracture Mechanics N2 - We present an extended finite element formulation for dynamic fracture of piezo-electric materials. The method is developed in the context of linear elastic fracture mechanics. It is applied to mode I and mixed mode-fracture for quasi-steady cracks. An implicit time integration scheme is exploited. The results are compared to results obtained with the boundary element method and show excellent agreement. KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.engfracmech.2012.04.025 SP - 19 EP - 31 ER - TY - JOUR A1 - Natarajan, S. A1 - Chakraborty, S. A1 - Thangavel, M. A1 - Bordas, Stéphane Pierre Alain A1 - Rabczuk, Timon T1 - Size dependent free flexural vibration behavior of functionally graded nanoplates JF - Computational Materials Science N2 - Size dependent free flexural vibration behavior of functionally graded nanoplates KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 SP - 74 EP - 80 ER - TY - JOUR A1 - Thai, Chien H. A1 - Nguyen-Xuan, Hung A1 - Nguyen-Thanh, Nhon A1 - Le, T.H. A1 - Nguyen-Thoi, T. A1 - Rabczuk, Timon T1 - Static, free vibration and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach JF - International Journal for Numerical Methods in Engineering N2 - This paper presents a novel numerical procedure based on the framework of isogeometric analysis for static, free vibration, and buckling analysis of laminated composite plates using the first-order shear deformation theory. The isogeometric approach utilizes non-uniform rational B-splines to implement for the quadratic, cubic, and quartic elements. Shear locking problem still exists in the stiffness formulation, and hence, it can be significantly alleviated by a stabilization technique. Several numerical examples are presented to show the performance of the method, and the results obtained are compared with other available ones. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1002/nme.4282 SP - 571 EP - 603 ER - TY - JOUR A1 - Zhao, Jun-Hua A1 - Guo, Wanlin A1 - Rabczuk, Timon T1 - An analytical molecular mechanics model for the elastic properties of crystalline polyethylene JF - Journal of Applied Physics N2 - We present an analytical model to relate the elastic properties of crystalline polyethylene based on a molecular mechanics approach. Along the polymer chains direction, the united-atom (UA) CH2-CH2 bond stretching, angle bending potentials are replaced with equivalent Euler-Bernoulli beams. Between any two polymer chains, the explicit formulae are derived for the van der Waals interaction represented by the linear springs of different stiffness. Then, the nine independent elastic constants are evaluated systematically using the formulae. The analytical model is finally validated by present united-atom molecular dynamics (MD) simulations and against available all-atom molecular dynamics results in the literature. The established analytical model provides an efficient route for mechanical characterization of crystalline polymers and related materials. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1063/1.4745035 ER - TY - JOUR A1 - Jiang, Jin-Wu A1 - Park, Harold S. A1 - Rabczuk, Timon T1 - Enhancing the mass sensitivity of graphene nanoresonators via nonlinear oscillations: The effective strain mechanism JF - Nanotechnology N2 - Enhancing the mass sensitivity of graphene nanoresonators via nonlinear oscillations: The effective strain mechanism KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 ER - TY - CHAP A1 - Wudtke, Idna ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - CONSTITUTIVE MODELING OF CRYSTALLINE MATERIALS WITH TEXTURE CHARACTERISTICS T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - The analysis of the response of complex structural systems requires the description of the material constitutive relations by means of an appropriate material model. The level of abstraction of such model may strongly affect the quality of the prognosis of the whole structure. In context to this fact, it is necessary to describe the material in a convenient sense as exact but as simple as possible. All material phenomena of crystalline materials e.g. steel, affecting the behavior of the structure, rely on physical effects which are interacting over spatial scales from subatomic to macroscopic range. Nevertheless, if the material is microscopically heterogenic, it might be appropriate to use phenomenological models for the purpose of civil engineering. Although constantly applied, these models are insufficient for steel materials with microscopic characteristics such as texture, typically occurring in hot rolled steel members or heat affected zones of welded joints. Hence, texture is manifested in crystalline materials as a regular crystallographic structure and crystallite orientation, influencing macroscopic material properties. The analysis of structural response of material with texture (e.g. rolled steel or heat affected zone of a welded joint) obliges the extension of the phenomenological material description of macroscopic scale by means of microscopic information. This paper introduces an enrichment approach for material models based on a hierarchical multiscale methodology. This has been done by describing the grain texture on a mesoscopic scale and coupling it with macroscopic constitutive relations by means of homogenization. Due to a variety of available homogenization methods, the question of an assessment of coupling quality arises. The applicability of the method and the effect of the coupling method on the reliability of the response are presented on an example. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27910 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Musial, Michal A1 - Kamiński, Mieczysław A1 - Ubysz, Andrzej ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - DISCRETE CRACK MODEL OF BORCZ FOR CALCULATING THE DEFLECTIONS OF BENDING REINFORCED CONCRETE BEAM T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - In the design of the reinforced concrete beams loaded by the bending moment, it is assumed that the structure can be used at a level of load, that there are local discontinuities - cracks. Designing the element demands checking two limit states of construction, load capacity and usability. Limit states usability include also the deflection of the element. Deflections in the reinforced concrete beams with cracks are based on actual rigidity of the element. After cracking there is a local change in rigidity of the beam. The rigidity is variable in the element’s length and due to the heterogeneous structure of concrete, it is not possible to clearly describe those changes. Most standards of testing methods tend to simplify the calculations and take the average value of the beam’s rigidity on its entire length. The rigidity depends on the level of the maximal load of the beam. Experimental researches verify the value by inserting the coefficients into the formulas used in the theory of elasticity. The researches describe the changes in rigidity in the beam’s length more precisely. The authors take into consideration the change of rigidity, depending on the level of maximum load (continuum models), or localize the changes in rigidity in the area of the cracks (discrete models). This paper presents one of the discrete models. It is distinguished by the fact that the left side of the differential equation, that depends on the rigidity, is constant, and all effects associated with the scratches are taken as the external load and placed on the right side of the equation. This allows to generalize the description. The paper presents a particular integral of the differential equation, which allow analyzing the displacement and vibration for different rigidity of the silo’s walls, the flow rate and type of the flowing material. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27907 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Musial, Michal A1 - Ubysz, Andrzej A1 - Ulatowski, Piotr ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - MODEL DESCRIBING STATIC AND DYNAMIC DISPLACEMENTS OF SILOS WALL DURING THE FLOW OF LOOSE MATERIAL T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - Correct evaluation of wall displacements is a key matter when designing silos. This issue is important from both the standpoint of design engineer (load-bearing capacity of structures) and end-consumer (durability of structures). Commonplace methods of silo design mainly focus on satisfying limit states of load-bearing capacity. Current standards fail to specify methods of dynamic displacements analysis. Measurements of stressacting on silo walls prove that the actual stress is sum of static and dynamic stresses. Janssen came up with differential equation describing state of static equilibrium in cross-section of a silo. By solving the equation static stress of granular solid on silo walls can be determined. Equations of motion were determined from equilibrium equations of feature objects. General solution, describing dynamic stresses was presented as parametric model. This paper presents particular integrals of differential equation, which enable analysing displacements and vibrations for different rigidities of silo walls, types of granular solid and its flow rate. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27896 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Suzuki, Osamu A1 - Lawrynowicz, Julian A1 - Nouno, Kiyoharu A1 - Nagayama, Daiki ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - BINARY AND TERNARY CLIFFORD ANALYSIS ON NONION ALGEBRA AND SU(3) T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - A concept of non-commutative Galois extension is introduced and binary and ternary extensions are chosen. Non-commutative Galois extensions of Nonion algebra and su(3) are constructed. Then ternary and binary Clifford analysis are introduced for non-commutative Galois extensions and the corresponding Dirac operators are associated. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27880 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Stutz, Henning A1 - Wuttke, Frank ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - EVALUATION OF SOIL-STRUCTURE INTERACTION MODELS USING DIFFERENT MODEL-ROBUSTNESS APPROACHES T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - The aim of this study is to show an application of model robustness measures for soilstructure interaction (henceforth written as SSI) models. Model robustness defines a measure for the ability of a model to provide useful model answers for input parameters which typically have a wide range in geotechnical engineering. The calculation of SSI is a major problem in geotechnical engineering. Several different models exist for the estimation of SSI. These can be separated into analytical, semi-analytical and numerical methods. This paper focuses on the numerical models of SSI specific macro-element type models and more advanced finite element method models using contact description as continuum or interface elements. A brief description of the models used is given in the paper. Following this description, the applied SSI problem is introduced. The observed event is a static loaded shallow foundation with an inclined load. The different partial models to consider the SSI effects are assessed using different robustness measures during numerical application. The paper shows the investigation of the capability to use these measures for the assessment of the model quality of SSI partial models. A variance based robustness and a mathematical robustness approaches are applied. These different robustness measures are used in a framework which allows also the investigation of computational time consuming models. Finally the result shows that the concept of using robustness approaches combined with other model–quality indicators (e.g. model sensitivity or model reliability) can lead to unique model–quality assessment for SSI models. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27878 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Simsek, Yilmaz ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - ON INTERPOLATION FUNCTION OF THE BERNSTEIN POLYNOMIALS T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - The Bernstein polynomials are used for important applications in many branches of Mathematics and the other sciences, for instance, approximation theory, probability theory, statistic theory, num- ber theory, the solution of the di¤erential equations, numerical analysis, constructing Bezier curves, q-calculus, operator theory and applications in computer graphics. The Bernstein polynomials are used to construct Bezier curves. Bezier was an engineer with the Renault car company and set out in the early 1960’s to develop a curve formulation which would lend itself to shape design. Engineers may …nd it most understandable to think of Bezier curves in terms of the center of mass of a set of point masses. Therefore, in this paper, we study on generating functions and functional equations for these polynomials. By applying these functions, we investigate interpolation function and many properties of these polynomials. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27867 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER -