TY - CHAP A1 - Kirichuk, A. A1 - Köppler, H. T1 - Numerical Algorithms and Computer Modeling for nonlinear Analysis of Shell Structures N2 - The dynamic behaviour of shells, which are widely used in construction and mechanical engineering as critical components of machinery and 3-D structures, under static and dynamic loadings is described by system of deep nonlinear differential equations. Solution of these equations can be received with assistance of technique basing on a modern numerical algorithms and computer modeling.. The system of nonlinear differential equations of vibration of the shells is proposed taking into account the inertia forces in the tangential and normal directions. Its solution is based on combination of parameter prolongation method, finite-difference method and the Newton-Kantorovich iterative algorithm that allows plotting the loading trajectories and determination of bifurcation points on them. Package of Applied Programs >SEVSOR< is a computation means to be used in research of deformation, stability and vibration in thin axically-symmetric shells of complicated shape Input data include information on shell geometry, physical and mechanical properties, bearing conditions, types of loadings and load application. Frame output of motion forms in real time or either in decelerated or accelerated time scales for creating cartoons or video films is used for analysis of the compound dynamic processes in shell-type structures. KW - Schale KW - Nichtlineares Phänomen KW - Modellierung KW - Finite-Elemente-Methode Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-4382 ER - TY - CHAP A1 - van Rooyen, G.C. A1 - Olivier, A. H. T1 - Notes on structural analysis in a distributed collaboratory N2 - The worldwide growth of communication networks and associated technologies provide the basic infrastructure for new ways of executing the engineering process. Collaboration amongst team members seperated in time and location is of particular importance. Two broad themes can be recognized in research pertaining to distributed collaboration. One theme focusses on the technical and technological aspects of distributed work, while the other emphasises human aspects thereof. The case of finite element structural analysis in a distributed collaboratory is examined in this paper. An approach is taken which has its roots in human aspects of the structural analysis task. Based on experience of how structural engineers currently approach and execute this task while utilising standard software designed for use on local workstations only, criteria are stated for a software architechture that could support collaborative structural analysis. Aspects of a pilot application and the results of qualitative performance measurements are discussed. KW - Ingenieurbau KW - Verteiltes System KW - Planungsprozess KW - Modellierung KW - Finite-Elemente-Methode Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1451 ER - TY - CHAP A1 - Ebert, Matthias A1 - Bucher, Christian T1 - Modelling of changing of dynamic and static parameters of damaged R/C N2 - Dynamic testing for damage assessment as non-destructive method has attracted growing in-terest for systematic inspections and maintenance of civil engineering structures. In this con-text the paper presents the Stochastic Finite Element (SFE) Modeling of the static and dy-namic results of own four point bending experiments with R/C beams. The beams are dam-aged by an increasing load. Between the load levels the dynamic properties are determined. Calculated stiffness loss factors for the displacements and the natural frequencies show differ-ent histories. A FE Model for the beams is developed with a discrete crack formulation. Cor-related random fields are used for structural parameters stiffness and tension strength. The idea is to simulate different crack evolutions. The beams have the same design parameters, but because of the stochastic material properties their undamaged state isn't yet the same. As the structure is loaded a stochastic first crack occurs on the weakest place of the structure. The further crack evolution is also stochastic. These is a great advantage compared with de-terministic formulations. To reduce the computational effort of the Monte Carlo simulation of this nonlinear problem the Latin-Hypercube sampling technique is applied. From the results functions of mean value and standard deviation of displacements and frequencies are calcu-lated. Compared with the experimental results some qualitative phenomena are good de-scribed by the model. Differences occurs especially in the dynamic behavior of the higher load levels. Aim of the investigations is to assess the possibilities of dynamic testing under consideration of effects from stochastic material properties KW - Stahlbetonbauteil KW - Bruchmechanik KW - Dynamische Belastung KW - Statische Last KW - Finite-Elemente-Methode KW - Stochastisches Modell Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-5825 ER - TY - JOUR A1 - Mortazavi, Bohayra A1 - Pereira, Luiz Felipe C. A1 - Jiang, Jin-Wu A1 - Rabczuk, Timon T1 - Modelling heat conduction in polycrystalline hexagonal boron-nitride films JF - Scientific Reports N2 - We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. KW - Wärmeleitfähigkeit KW - Bornitrid KW - Finite-Elemente-Methode Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170425-31534 ER - TY - THES A1 - Jia, Yue T1 - Methods based on B-splines for model representation, numerical analysis and image registration N2 - The thesis consists of inter-connected parts for modeling and analysis using newly developed isogeometric methods. The main parts are reproducing kernel triangular B-splines, extended isogeometric analysis for solving weakly discontinuous problems, collocation methods using superconvergent points, and B-spline basis in image registration applications. Each topic is oriented towards application of isogeometric analysis basis functions to ease the process of integrating the modeling and analysis phases of simulation. First, we develop reproducing a kernel triangular B-spline-based FEM for solving PDEs. We review the triangular B-splines and their properties. By definition, the triangular basis function is very flexible in modeling complicated domains. However, instability results when it is applied for analysis. We modify the triangular B-spline by a reproducing kernel technique, calculating a correction term for the triangular kernel function from the chosen surrounding basis. The improved triangular basis is capable to obtain the results with higher accuracy and almost optimal convergence rates. Second, we propose an extended isogeometric analysis for dealing with weakly discontinuous problems such as material interfaces. The original IGA is combined with XFEM-like enrichments which are continuous functions themselves but with discontinuous derivatives. Consequently, the resulting solution space can approximate solutions with weak discontinuities. The method is also applied to curved material interfaces, where the inverse mapping and the curved triangular elements are considered. Third, we develop an IGA collocation method using superconvergent points. The collocation methods are efficient because no numerical integration is needed. In particular when higher polynomial basis applied, the method has a lower computational cost than Galerkin methods. However, the positions of the collocation points are crucial for the accuracy of the method, as they affect the convergent rate significantly. The proposed IGA collocation method uses superconvergent points instead of the traditional Greville abscissae points. The numerical results show the proposed method can have better accuracy and optimal convergence rates, while the traditional IGA collocation has optimal convergence only for even polynomial degrees. Lastly, we propose a novel dynamic multilevel technique for handling image registration. It is application of the B-spline functions in image processing. The procedure considered aims to align a target image from a reference image by a spatial transformation. The method starts with an energy function which is the same as a FEM-based image registration. However, we simplify the solving procedure, working on the energy function directly. We dynamically solve for control points which are coefficients of B-spline basis functions. The new approach is more simple and fast. Moreover, it is also enhanced by a multilevel technique in order to prevent instabilities. The numerical testing consists of two artificial images, four real bio-medical MRI brain and CT heart images, and they show our registration method is accurate, fast and efficient, especially for large deformation problems. KW - Finite-Elemente-Methode KW - isogeometric methods Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20151210-24849 ER - TY - CHAP A1 - Popova, E. D. A1 - Datcheva, Maria A1 - Iankov, Roumen T1 - Mechanical Models with Interval Parameters N2 - In this paper we consider modelling of composite material with inclusions where the elastic material properties of both matrix and inclusions are uncertain and vary within prescribed bounds. Such mechanical systems, involving interval uncertainties and modelled by finite element method, can be described by parameter dependent systems of linear interval equations and process variables depending on the system solution. A newly developed hybrid interval approach for solving parametric interval linear systems is applied to the considered model and the results are compared to other interval methods. The hybrid approach provides very sharp bounds for the process variables - element strains and stresses. The sources for overestimation when dealing with interval computations are demonstrated. Based on the element strains and stresses, we introduce a definition for the values of nodal strains and stresses by using a set-theoretic approach. KW - Verbundwerkstoff KW - Modellierung KW - Finite-Elemente-Methode Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-3482 ER - TY - THES A1 - Keßler, Andrea T1 - Matrix-free voxel-based finite element method for materials with heterogeneous microstructures T1 - Matrixfreie voxelbasierte Finite-Elemente-Methode für Materialien mit komplizierter Mikrostruktur N2 - Modern image detection techniques such as micro computer tomography (μCT), magnetic resonance imaging (MRI) and scanning electron microscopy (SEM) provide us with high resolution images of the microstructure of materials in a non-invasive and convenient way. They form the basis for the geometrical models of high-resolution analysis, so called image-based analysis. However especially in 3D, discretizations of these models reach easily the size of 100 Mill. degrees of freedoms and require extensive hardware resources in terms of main memory and computing power to solve the numerical model. Consequently, the focus of this work is to combine and adapt numerical solution methods to reduce the memory demand first and then the computation time and therewith enable an execution of the image-based analysis on modern computer desktops. Hence, the numerical model is a straightforward grid discretization of the voxel-based (pixels with a third dimension) geometry which omits the boundary detection algorithms and allows reduced storage of the finite element data structure and a matrix-free solution algorithm. This in turn reduce the effort of almost all applied grid-based solution techniques and results in memory efficient and numerically stable algorithms for the microstructural models. Two variants of the matrix-free algorithm are presented. The efficient iterative solution method of conjugate gradients is used with matrix-free applicable preconditioners such as the Jacobi and the especially suited multigrid method. The jagged material boundaries of the voxel-based mesh are smoothed through embedded boundary elements which contain different material information at the integration point and are integrated sub-cell wise though without additional boundary detection. The efficiency of the matrix-free methods can be retained. N2 - Moderne bildgebende Verfahren wie Mikro-Computertomographie (μCT), Magnetresonanztomographie (MRT) und Rasterelektronenmikroskopie (SEM) liefern nicht-invasiv hochauflösende Bilder der Mikrostruktur von Materialien. Sie bilden die Grundlage der geometrischen Modelle der hochauflösenden bildbasierten Analysis. Allerdings erreichen vor allem in 3D die Diskretisierungen dieser Modelle leicht die Größe von 100 Mill. Freiheitsgraden und erfordern umfangreiche Hardware-Ressourcen in Bezug auf Hauptspeicher und Rechenleistung, um das numerische Modell zu lösen. Der Fokus dieser Arbeit liegt daher darin, numerische Lösungsmethoden zu kombinieren und anzupassen, um den Speicherplatzbedarf und die Rechenzeit zu reduzieren und damit eine Ausführung der bildbasierten Analyse auf modernen Computer-Desktops zu ermöglichen. Daher ist als numerisches Modell eine einfache Gitterdiskretisierung der voxelbasierten (Pixel mit der Tiefe als dritten Dimension) Geometrie gewählt, die die Oberflächenerstellung weglässt und eine reduzierte Speicherung der finiten Elementen und einen matrixfreien Lösungsalgorithmus ermöglicht. Dies wiederum verringert den Aufwand von fast allen angewandten gitterbasierten Lösungsverfahren und führt zu Speichereffizienz und numerisch stabilen Algorithmen für die Mikrostrukturmodelle. Es werden zwei Varianten der Anpassung der matrixfreien Lösung präsentiert, die Element-für-Element Methode und eine Knoten-Kanten-Variante. Die Methode der konjugierten Gradienten in Kombination mit dem Mehrgitterverfahren als sehr effizienten Vorkonditionierer wird für den matrixfreien Lösungsalgorithmus adaptiert. Der stufige Verlauf der Materialgrenzen durch die voxelbasierte Diskretisierung wird durch Elemente geglättet, die am Integrationspunkt unterschiedliche Materialinformationen enthalten und über Teilzellen integriert werden (embedded boundary elements). Die Effizienz der matrixfreien Verfahren bleibt erhalten. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2018,7 KW - Dissertation KW - Finite-Elemente-Methode KW - Konjugierte-Gradienten-Methode KW - Mehrgitterverfahren KW - conjugate gradient method KW - multigrid method KW - grid-based KW - finite element method KW - matrix-free Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190116-38448 ER - TY - JOUR A1 - Galffy, Mozes A1 - Wellmann Jelic, Andres A1 - Hartmann, Dietrich T1 - Lifetime-oriented modelling of vortex-induced across-wind vibrations on bridge tie rods N2 - The influence of vortex-induces vibrations on vertical tie rods has been proved as a determinant load factor in the lifetime-oriented dimensioning of arched steel bridges. Particularly, the welded connection plates between the suspenders and the arches often exhibit cracks induced primarily rods. In this context, the synchronization of the vortex-shedding to the rod motion in a critical wind velocity range, the so-called lock-in effect, is of essential interest. KW - Finite-Elemente-Methode KW - Physikalisches Verfahren KW - Brückenbau KW - Schwingung Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2536 ER - TY - JOUR A1 - Kashiyama, Kazuo A1 - Hamada, Hidetaka A1 - Taniguchi, Takeo T1 - Large Scale Finite Element Simulation and Modeling Using GIS/CAD for Environmental Flows in Urban Area N2 - A large-scale computer modeling and simulation method is presented for environmental flows in urban area. Several GIS and CAD data were used for the preparation of shape model and an automatic mesh generation method based on Delaunay method was developed. Parallel finite element method based on domain decomposition method was employed for the numerical simulation of natural phenomena. The present method was applied to the simulation of flood flow and wind flow in urban area. The present method is shown to be a useful planning and design tool for the natural disasters and the change of environments. KW - Geoinformationssystem KW - Finite-Elemente-Methode KW - Stadtplanung Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2675 ER - TY - THES A1 - López Zermeño, Jorge Alberto T1 - Isogeometric and CAD-based methods for shape and topology optimization: Sensitivity analysis, Bézier elements and phase-field approaches N2 - The Finite Element Method (FEM) is widely used in engineering for solving Partial Differential Equations (PDEs) over complex geometries. To this end, it is required to provide the FEM software with a geometric model that is typically constructed in a Computer-Aided Design (CAD) software. However, FEM and CAD use different approaches for the mathematical description of the geometry. Thus, it is required to generate a mesh, which is suitable for FEM, based on the CAD model. Nonetheless, this procedure is not a trivial task and it can be time consuming. This issue becomes more significant for solving shape and topology optimization problems, which consist in evolving the geometry iteratively. Therefore, the computational cost associated to the mesh generation process is increased exponentially for this type of applications. The main goal of this work is to investigate the integration of CAD and CAE in shape and topology optimization. To this end, numerical tools that close the gap between design and analysis are presented. The specific objectives of this work are listed below: • Automatize the sensitivity analysis in an isogeometric framework for applications in shape optimization. Applications for linear elasticity are considered. • A methodology is developed for providing a direct link between the CAD model and the analysis mesh. In consequence, the sensitivity analysis can be performed in terms of the design variables located in the design model. • The last objective is to develop an isogeometric method for shape and topological optimization. This method should take advantage of using Non-Uniform Rational B-Splines (NURBS) with higher continuity as basis functions. Isogeometric Analysis (IGA) is a framework designed to integrate the design and analysis in engineering problems. The fundamental idea of IGA is to use the same basis functions for modeling the geometry, usually NURBS, for the approximation of the solution fields. The advantage of integrating design and analysis is two-fold. First, the analysis stage is more accurate since the system of PDEs is not solved using an approximated geometry, but the exact CAD model. Moreover, providing a direct link between the design and analysis discretizations makes possible the implementation of efficient sensitivity analysis methods. Second, the computational time is significantly reduced because the mesh generation process can be avoided. Sensitivity analysis is essential for solving optimization problems when gradient-based optimization algorithms are employed. Automatic differentiation can compute exact gradients, automatically by tracking the algebraic operations performed on the design variables. For the automation of the sensitivity analysis, an isogeometric framework is used. Here, the analysis mesh is obtained after carrying out successive refinements, while retaining the coarse geometry for the domain design. An automatic differentiation (AD) toolbox is used to perform the sensitivity analysis. The AD toolbox takes the code for computing the objective and constraint functions as input. Then, using a source code transformation approach, it outputs a code for computing the objective and constraint functions, and their sensitivities as well. The sensitivities obtained from the sensitivity propagation method are compared with analytical sensitivities, which are computed using a full isogeometric approach. The computational efficiency of AD is comparable to that of analytical sensitivities. However, the memory requirements are larger for AD. Therefore, AD is preferable if the memory requirements are satisfied. Automatic sensitivity analysis demonstrates its practicality since it simplifies the work of engineers and designers. Complex geometries with sharp edges and/or holes cannot easily be described with NURBS. One solution is the use of unstructured meshes. Simplex-elements (triangles and tetrahedra for two and three dimensions respectively) are particularly useful since they can automatically parameterize a wide variety of domains. In this regard, unstructured Bézier elements, commonly used in CAD, can be employed for the exact modelling of CAD boundary representations. In two dimensions, the domain enclosed by NURBS curves is parameterized with Bézier triangles. To describe exactly the boundary of a two-dimensional CAD model, the continuity of a NURBS boundary representation is reduced to C^0. Then, the control points are used to generate a triangulation such that the boundary of the domain is identical to the initial CAD boundary representation. Thus, a direct link between the design and analysis discretizations is provided and the sensitivities can be propagated to the design domain. In three dimensions, the initial CAD boundary representation is given as a collection of NURBS surfaces that enclose a volume. Using a mesh generator (Gmsh), a tetrahedral mesh is obtained. The original surface is reconstructed by modifying the location of the control points of the tetrahedral mesh using Bézier tetrahedral elements and a point inversion algorithm. This method offers the possibility of computing the sensitivity analysis using the analysis mesh. Then, the sensitivities can be propagated into the design discretization. To reuse the mesh originally generated, a moving Bézier tetrahedral mesh approach was implemented. A gradient-based optimization algorithm is employed together with a sensitivity propagation procedure for the shape optimization cases. The proposed shape optimization approaches are used to solve some standard benchmark problems in structural mechanics. The results obtained show that the proposed approach can compute accurate gradients and evolve the geometry towards optimal solutions. In three dimensions, the moving mesh approach results in faster convergence in terms of computational time and avoids remeshing at each optimization step. For considering topological changes in a CAD-based framework, an isogeometric phase-field based shape and topology optimization is developed. In this case, the diffuse interface of a phase-field variable over a design domain implicitly describes the boundaries of the geometry. The design variables are the local values of the phase-field variable. The descent direction to minimize the objective function is found by using the sensitivities of the objective function with respect to the design variables. The evolution of the phase-field is determined by solving the time dependent Allen-Cahn equation. Especially for topology optimization problems that require C^1 continuity, such as for flexoelectric structures, the isogeometric phase field method is of great advantage. NURBS can achieve the desired continuity more efficiently than the traditional employed functions. The robustness of the method is demonstrated when applied to different geometries, boundary conditions, and material configurations. The applications illustrate that compared to piezoelectricity, the electrical performance of flexoelectric microbeams is larger under bending. In contrast, the electrical power for a structure under compression becomes larger with piezoelectricity. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2022,4 KW - CAD KW - Gestaltoptimierung KW - Topologieoptimierung KW - Isogeometrische Analyse KW - Finite-Elemente-Methode KW - Computer-Aided Design KW - Shape Optimization KW - Topology Optimization KW - Isogeometric Analysis KW - Finite Element Method Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220831-47102 ER - TY - THES A1 - Hossain, Md Naim T1 - Isogeometric analysis based on Geometry Independent Field approximaTion (GIFT) and Polynomial Splines over Hierarchical T-meshes N2 - This thesis addresses an adaptive higher-order method based on a Geometry Independent Field approximatTion(GIFT) of polynomial/rationals plines over hierarchical T-meshes(PHT/RHT-splines). In isogeometric analysis, basis functions used for constructing geometric models in computer-aided design(CAD) are also employed to discretize the partial differential equations(PDEs) for numerical analysis. Non-uniform rational B-Splines(NURBS) are the most commonly used basis functions in CAD. However, they may not be ideal for numerical analysis where local refinement is required. The alternative method GIFT deploys different splines for geometry and numerical analysis. NURBS are utilized for the geometry representation, while for the field solution, PHT/RHT-splines are used. PHT-splines not only inherit the useful properties of B-splines and NURBS, but also possess the capabilities of local refinement and hierarchical structure. The smooth basis function properties of PHT-splines make them suitable for analysis purposes. While most problems considered in isogeometric analysis can be solved efficiently when the solution is smooth, many non-trivial problems have rough solutions. For example, this can be caused by the presence of re-entrant corners in the domain. For such problems, a tensor-product basis (as in the case of NURBS) is less suitable for resolving the singularities that appear since refinement propagates throughout the computational domain. Hierarchical bases and local refinement (as in the case of PHT-splines) allow for a more efficient way to resolve these singularities by adding more degrees of freedom where they are necessary. In order to drive the adaptive refinement, an efficient recovery-based error estimator is proposed in this thesis. The estimator produces a recovery solution which is a more accurate approximation than the computed numerical solution. Several two- and three-dimensional numerical investigations with PHT-splines of higher order and continuity prove that the proposed method is capable of obtaining results with higher accuracy, better convergence, fewer degrees of freedom and less computational cost than NURBS for smooth solution problems. The adaptive GIFT method utilizing PHT-splines with the recovery-based error estimator is used for solutions with discontinuities or singularities where adaptive local refinement in particular domains of interest achieves higher accuracy with fewer degrees of freedom. This method also proves that it can handle complicated multi-patch domains for two- and three-dimensional problems outperforming uniform refinement in terms of degrees of freedom and computational cost. T2 - Die isogeometrische Analysis basierend auf der geometrieunabhängigen Feldnäherung (GIFT)und polynomialen Splines über hierarchischen T-Netzen KW - Finite-Elemente-Methode KW - Isogeometrc Analysis KW - Geometry Independent Field Approximation KW - Polynomial Splines over Hierarchical T-meshes KW - Recovery Based Error Estimator Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20191129-40376 ER - TY - THES A1 - Nanthakumar, S.S. T1 - Inverse and optimization problems in piezoelectric materials using Extended Finite Element Method and Level sets T1 - Inverse und Optimierungsprobleme für piezoelektrische Materialien mit der Extended Finite Elemente Methode und Level sets N2 - Piezoelectric materials are used in several applications as sensors and actuators where they experience high stress and electric field concentrations as a result of which they may fail due to fracture. Though there are many analytical and experimental works on piezoelectric fracture mechanics. There are very few studies about damage detection, which is an interesting way to prevent the failure of these ceramics. An iterative method to treat the inverse problem of detecting cracks and voids in piezoelectric structures is proposed. Extended finite element method (XFEM) is employed for solving the inverse problem as it allows the use of a single regular mesh for large number of iterations with different flaw geometries. Firstly, minimization of cost function is performed by Multilevel Coordinate Search (MCS) method. The XFEM-MCS methodology is applied to two dimensional electromechanical problems where flaws considered are straight cracks and elliptical voids. Then a numerical method based on combination of classical shape derivative and level set method for front propagation used in structural optimization is utilized to minimize the cost function. The results obtained show that the XFEM-level set methodology is effectively able to determine the number of voids in a piezoelectric structure and its corresponding locations. The XFEM-level set methodology is improved to solve the inverse problem of detecting inclusion interfaces in a piezoelectric structure. The material interfaces are implicitly represented by level sets which are identified by applying regularisation using total variation penalty terms. The formulation is presented for three dimensional structures and inclusions made of different materials are detected by using multiple level sets. The results obtained prove that the iterative procedure proposed can determine the location and approximate shape of material subdomains in the presence of higher noise levels. Piezoelectric nanostructures exhibit size dependent properties because of surface elasticity and surface piezoelectricity. Initially a study to understand the influence of surface elasticity on optimization of nano elastic beams is performed. The boundary of the nano structure is implicitly represented by a level set function, which is considered as the design variable in the optimization process. Two objective functions, minimizing the total potential energy of a nanostructure subjected to a material volume constraint and minimizing the least square error compared to a target displacement, are chosen for the numerical examples. The numerical examples demonstrate the importance of size and aspect ratio in determining how surface effects impact the optimized topology of nanobeams. Finally a conventional cantilever energy harvester with a piezoelectric nano layer is analysed. The presence of surface piezoelectricity in nano beams and nano plates leads to increase in electromechanical coupling coefficient. Topology optimization of these piezoelectric structures in an energy harvesting device to further increase energy conversion using appropriately modified XFEM-level set algorithm is performed . KW - Finite-Elemente-Methode KW - Piezoelectricity KW - Inverse problems KW - Optimization problems KW - Nanostructures KW - XFEM KW - level set method KW - Surface effects Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20161128-27095 ER - TY - THES A1 - Schwedler, Michael T1 - Integrated structural analysis using isogeometric finite element methods N2 - The gradual digitization in the architecture, engineering, and construction industry over the past fifty years led to an extremely heterogeneous software environment, which today is embodied by the multitude of different digital tools and proprietary data formats used by the many specialists contributing to the design process in a construction project. Though these projects become increasingly complex, the demands on financial efficiency and the completion within a tight schedule grow at the same time. The digital collaboration of project partners has been identified as one key issue in successfully dealing with these challenges. Yet currently, the numerous software applications and their respective individual views on the design process severely impede that collaboration. An approach to establish a unified basis for the digital collaboration, regardless of the existing software heterogeneity, is a comprehensive digital building model contributed to by all projects partners. This type of data management known as building information modeling (BIM) has many benefits, yet its adoption is associated with many difficulties and thus, proceeds only slowly. One aspect in the field of conflicting requirements on such a digital model is the cooperation of architects and structural engineers. Traditionally, these two disciplines use different abstractions of reality for their models that in consequence lead to incompatible digital representations thereof. The onset of isogeometric analysis (IGA) promised to ease the discrepancy in design and analysis model representations. Yet, that initial focus quickly shifted towards using these methods as a more powerful basis for numerical simulations. Furthermore, the isogeometric representation alone is not capable of solving the model abstraction problem. It is thus the intention of this work to contribute to an improved digital collaboration of architects and engineers by exploring an integrated analysis approach on the basis of an unified digital model and solid geometry expressed by splines. In the course of this work, an analysis framework is developed that utilizes such models to automatically conduct numerical simulations commonly required in construction projects. In essence, this allows to retrieve structural analysis results from BIM models in a fast and simple manner, thereby facilitating rapid design iterations and profound design feedback. The BIM implementation Industry Foundation Classes (IFC) is reviewed with regard to its capabilities of representing the unified model. The current IFC schema strongly supports the use of redundant model data, a major pitfall in digital collaboration. Additionally, it does not allow to describe the geometry by volumetric splines. As the pursued approach builds upon a unique model for both, architectural and structural design, and furthermore requires solid geometry, necessary schema modifications are suggested. Structural entities are modeled by volumetric NURBS patches, each of which constitutes an individual subdomain that, with regard to the analysis, is incompatible with the remaining full model. The resulting consequences for numerical simulation are elaborated in this work. The individual subdomains have to be weakly coupled, for which the mortar method is used. Different approaches to discretize the interface traction fields are implemented and their respective impact on the analysis results is evaluated. All necessary coupling conditions are automatically derived from the related geometry model. The weak coupling procedure leads to a linear system of equations in saddle point form, which, owed to the volumetric modeling, is large in size and, the associated coefficient matrix has, due to the use of higher degree basis functions, a high bandwidth. The peculiarities of the system require adapted solution methods that generally cause higher numerical costs than the standard procedures for symmetric, positive-definite systems do. Different methods to solve the specific system are investigated and an efficient parallel algorithm is finally proposed. When the structural analysis model is derived from the unified model in the BIM data, it does in general initially not meet the requirements on the discretization that are necessary to obtain sufficiently accurate analysis results. The consequently necessary patch refinements must be controlled automatically to allowfor an entirely automatic analysis procedure. For that purpose, an empirical refinement scheme based on the geometrical and possibly mechanical properties of the specific entities is proposed. The level of refinement may be selectively manipulated by the structural engineer in charge. Furthermore, a Zienkiewicz-Zhu type error estimator is adapted for the use with isogeometric analysis results. It is shown that also this estimator can be used to steer an adaptive refinement procedure. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2016,2 KW - Finite-Elemente-Methode KW - NURBS KW - Isogeometrische Analyse KW - finite element method KW - isogeometric analysis KW - mortar method KW - building information modelling Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170130-27372 ER - TY - THES A1 - Kurukuri, Srihari T1 - Homogenization of Damaged Concrete Mesostructures using Representative Volume Elements - Implementation and Application to SLang N2 - This master thesis explores an important and under-researched topic on the so-called bridging of length scales (from >meso< to >macro<), with the concept of homogenization in which the careful characterization of mechanical response requires that the developed material model >bridge< the representations of events that occur at two different scales. The underlying objective here is to efficiently incorporate material length scales in the classical continuum plasticity/damage theories through the concept of homogenization theory. The present thesis is devoted to computational modeling of heterogeneous materials, primarily to matrix-inclusion type of materials. Considerations are focused predominantly on the elastic and damage behavior as a response to quasistatic mechanical loading. Mainly this thesis focuses to elaborate a sound numerical homogenization model which accounts for the prediction of overall properties with the application of different types of boundary conditions namely: periodic, homogeneous and mixed type of boundary conditions over two-dimensional periodic and non-periodic RVEs and three-dimensional non-periodic RVEs. Identification of the governing mechanisms and assessing their effect on the material behavior leads one step further. Bringing together this knowledge with service requirements allows for functional oriented materials design. First, this thesis gives attention on providing the theoretical basic mechanisms involved in homogenization techniques and a survey will be made on existing analytical methods available in literature. Second, the proposed frameworks are implemented in the well known finite element software programs ANSYS and SLang. Simple and efficient algorithms in FORTRAN are developed for automated microstructure generation using RSA algorithm in order to perform a systematic numerical testing of microstructures of composites. Algorithms are developed to generate constraint equations in periodic boundary conditions and different displacements applied spatially over the boundaries of the RVE in homogeneous boundary conditions. Finally, nonlinear simulations are performed at mesolevel, by considering continuum scalar damage behavior of matrix material with the linear elastic behavior of aggregates with the assumption of rigid bond between constituents. KW - Schadensmechanik KW - Finite-Elemente-Methode KW - Beton KW - Homogenisierung KW - Repräsentative Volumen Elemente KW - Mesoskala KW - Homogenization KW - Representative Volume Elements KW - Mesoscale Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-6670 N1 - Der Volltext-Zugang wurde im Zusammenhang mit der Klärung urheberrechtlicher Fragen mit sofortiger Wirkung gesperrt. ER - TY - CHAP A1 - Gurtovy, O. G. A1 - Piskunov, V. G. T1 - HIGH-PRECISION MODELING AND FINITE-ELEMENT INVESTIGATION OF ELASTOPLASTIC DEFORMATION OF NON-ISOTROPIC THICK SANDWICH PLATES AND SHELLS N2 - There was suggested a phenomenological modified quadratic condition of the beginning of plasticity for plastic and quasifragile orthotropic materials. Limiting surface in the shape of a paraboloid with an axis bend over hydrostatic axis corresponds to the condition. The equations of theory of current with the isotropic and anisotropic hardenings, associated with the suggested yield condition, modified into the version of determining equations of strain theory of plasticity are received. These defining equations formed the basis of highlyprecise non-classic continual (along thickness) theory of non-linear deformation of thick sandwich plates and sloping shells. In the approximations along the cross coordinate the specificity of flexural and non-flexural deformations is taken into account. The necessity of introducing the approximations of higher order, as well as accounting for the cross compression while decreasing of the relatively cross normal and shear layer rigidness is shown. The specifications, obtained in comparison with the known physically nonlinear specified model of the bending of plates with orthotropic layers are distinguished. An effective procedure of linearization of the solving equations and getting the solutions in frames of the discrete-continual scheme of the finite-element method is suggested. The approximations of higher order let to model the appearance of the cracs of layers being split by the introducing of slightly hard thin layers into the finite element, not violating the idea of continuality of theory. Calculation of a threelayer plate with rigid face diaphragms on the contour is considered KW - Platte KW - Schale KW - Sandwichbauteil KW - Elastoplastizität KW - Finite-Elemente-Methode Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-5848 ER - TY - THES A1 - Häfner, Stefan T1 - Grid-based procedures for the mechanical analysis of heterogeneous solids N2 - The importance of modern simulation methods in the mechanical analysis of heterogeneous solids is presented in detail. Thereby the problem is noted that even for small bodies the required high-resolution analysis reaches the limits of today's computational power, in terms of memory demand as well as acceptable computational effort. A further problem is that frequently the accuracy of geometrical modelling of heterogeneous bodies is inadequate. The present work introduces a systematic combination and adaption of grid-based methods for achieving an essentially higher resolution in the numerical analysis of heterogeneous solids. Grid-based methods are as well primely suited for developing efficient and numerically stable algorithms for flexible geometrical modeling. A key aspect is the uniform data management for a grid, which can be utilized to reduce the effort and complexity of almost all concerned methods. A new finite element program, called Mulgrido, was just developed to realize this concept consistently and to test the proposed methods. Several disadvantages which generally result from grid discretizations are selectively corrected by modified methods. The present work is structured into a geometrical model, a mechanical model and a numerical model. The geometrical model includes digital image-based modeling and in particular several methods for the theory-based generation of inclusion-matrix models. Essential contributions refer to variable shape, size distribution, separation checks and placement procedures of inclusions. The mechanical model prepares the fundamentals of continuum mechanics, homogenization and damage modeling for the following numerical methods. The first topic of the numerical model introduces to a special version of B-spline finite elements. These finite elements are entirely variable in the order k of B-splines. For homogeneous bodies this means that the approximation quality can arbitrarily be scaled. In addition, the multiphase finite element concept in combination with transition zones along material interfaces yields a valuable solution for heterogeneous bodies. As the formulation is element-based, the storage of a global stiffness matrix is superseded such that the memory demand can essentially be reduced. This is possible in combination with iterative solver methods which represent the second topic of the numerical model. Here, the focus lies on multigrid methods where the number of required operations to solve a linear equation system only increases linearly with problem size. Moreover, for badly conditioned problems quite an essential improvement is achieved by preconditioning. The third part of the numerical model discusses certain aspects of damage simulation which are closely related to the proposed grid discretization. The strong efficiency of the linear analysis can be maintained for damage simulation. This is achieved by a damage-controlled sequentially linear iteration scheme. Finally a study on the effective material behavior of heterogeneous bodies is presented. Especially the influence of inclusion shapes is examined. By means of altogether more than one hundred thousand random geometrical arrangements, the effective material behavior is statistically analyzed and assessed. N2 - Die wichtige Bedeutung moderner Simulationsverfahren in der mechanischen Analyse heterogener Festkörper wird eingangs ausführlich dargestellt. Dabei wird als Problem festgestellt, dass die erforderliche hochauflösende Analyse bereits für relativ kleine Körper an die Grenzen heutiger Rechenleistung stößt, sowohl bezüglich Speicherbedarf als auch akzeptablen Rechenaufwands. Ein weiteres Problem stellt die häufig unzureichend genaue geometrische Modellierung der Zusammensetzung heterogener Körper dar. Die vorliegende Arbeit führt eine systematische Kombination und Anpassung von gitterbasierten Methoden ein, um dadurch eine wesentlich höhere Auflösung in der numerischen Analyse heterogener Körper zu erzielen. Gitterverfahren eignen sich ebenfalls ausgezeichnet, um effiziente und numerisch stabile Algorithmen zur flexiblen geometrischen Modellierung zu entwickeln. Ein Schlüsselaspekt stellt ein gleichmäßiges Datenmanagement für Gitter dar, welches dafür eingesetzt werden kann, um den Aufwand und die Komplexität von nahezu allen beteiligten Methoden zu reduzieren. Ein neues Finite-Elemente Programm, namens Mulgrido, wurde eigens dafür entwickelt, um das vorgeschlagene Konzept konsistent zu realisieren und zu untersuchen. Einige Nachteile, die sich klassischerweise aus Gitterdiskretisierungen ergeben, werden gezielt durch modifizierte Verfahren korrigiert. Die gegenwärtige Arbeit gliedert sich in ein geometrisches Modell, ein mechanisches Modell und ein numerisches Modell. Das geometrische Modell beinhaltet neben Methoden der digitalen Bildverarbeitung, insbesondere sämtliche Verfahren zur künstlichen Generierung von Einschluss-Matrix Geometrien. Wesentliche Beiträge werden bezüglich variabler Form, Größenverteilung, Überschneidungsabfragen und Platzierung von Einschlüssen geleistet. Das mechanische Modell bereitet durch Grundlagen der Kontinuumsmechanik, der Homogenisierung und der Schädigungsmodellierung auf eine numerische Umsetzung vor. Als erstes Thema des numerischen Modells wird eine besondere Umsetzung von B-Spline Finiten Elementen vorgestellt. Diese Finite Elemente können generisch für eine beliebige Ordnung k der B-Splines erzeugt werden. Für homogene Körper verfügen diese somit über beliebig skalierbare Approximationseigenschaften. Mittels des Konzepts mehrphasiger Finite Elemente in Kombination mit Übergangszonen entlang von Materialgrenzen gelingt eine hochwertige Erweiterung für heterogene Körper. Durch die Formulierung auf Elementebene, kann die Speicherung der globalen Steifigkeitsmatrix und somit wesentlicher Speicherplatz eingespart werden. Dies ist möglich in Kombination mit iterativen Lösungsverfahren, die das zweite Thema des numerischen Modells darstellen. Dabei liegt der Fokus auf Mehrgitterverfahren. Diese zeichnen sich dadurch aus, dass die Anzahl der erforderlichen Operationen um ein lineares Gleichungssystem zu lösen, nur linear mit der Problemgröße ansteigt. Durch Vorkonditionierung wird für schlecht konditionierte Probleme eine ganz wesentliche Verbesserung erreicht. Als drittes Thema des numerischen Modells werden Aspekte der Schädigungssimulation diskutiert, die in engem Zusammenhang mit der Gitterdiskretisierung stehen. Die hohe Effizienz der linearen Analyse kann durch ein schädigungskontrolliertes, schrittweise lineares Iterationsschema für die Schädigungsanalyse aufrecht erhalten werden. Abschließend wird eine Studie über das effektive Materialverhalten heterogener Körper vorgestellt. Insbesondere wird der Einfluss der Form von Einschlüssen untersucht. Mittels insgesamt weit über hunderttausend zufälliger geometrischer Anordnungen wird das effektive Materialverhalten statistisch analysiert und bewertet. T2 - Gitterbasierte Verfahren zur mechanischen Analyse heterogener Festkörper KW - B-Spline KW - Finite-Elemente-Methode KW - Mehrgitterverfahren KW - Homogenisieren KW - Schädigung KW - Festkörpermechanik KW - Numerische Mathematik KW - B-Spline Finite Elemente KW - Homogenisierung KW - mehrphasig KW - Lösungsverfahren KW - Modellierung KW - B-spline KW - finite element KW - multigrid KW - multiphase KW - effective properties Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20070830-9185 ER - TY - THES A1 - Habtemariam, Abinet Kifle T1 - Generalized Beam Theory for the analysis of thin-walled circular pipe members N2 - The detailed structural analysis of thin-walled circular pipe members often requires the use of a shell or solid-based finite element method. Although these methods provide a very good approximation of the deformations, they require a higher degree of discretization which causes high computational costs. On the other hand, the analysis of thin-walled circular pipe members based on classical beam theories is easy to implement and needs much less computation time, however, they are limited in their ability to approximate the deformations as they cannot consider the deformation of the cross-section. This dissertation focuses on the study of the Generalized Beam Theory (GBT) which is both accurate and efficient in analyzing thin-walled members. This theory is based on the separation of variables in which the displacement field is expressed as a combination of predetermined deformation modes related to the cross-section, and unknown amplitude functions defined on the beam's longitudinal axis. Although the GBT was initially developed for long straight members, through the consideration of complementary deformation modes, which amend the null transverse and shear membrane strain assumptions of the classical GBT, problems involving short members, pipe bends, and geometrical nonlinearity can also be analyzed using GBT. In this dissertation, the GBT formulation for the analysis of these problems is developed and the application and capabilities of the method are illustrated using several numerical examples. Furthermore, the displacement and stress field results of these examples are verified using an equivalent refined shell-based finite element model. The developed static and dynamic GBT formulations for curved thin-walled circular pipes are based on the linear kinematic description of the curved shell theory. In these formulations, the complex problem in pipe bends due to the strong coupling effect of the longitudinal bending, warping and the cross-sectional ovalization is handled precisely through the derivation of the coupling tensors between the considered GBT deformation modes. Similarly, the geometrically nonlinear GBT analysis is formulated for thin-walled circular pipes based on the nonlinear membrane kinematic equations. Here, the initial linear and quadratic stress and displacement tangent stiffness matrices are built using the third and fourth-order GBT deformation mode coupling tensors. Longitudinally, the formulation of the coupled GBT element stiffness and mass matrices are presented using a beam-based finite element formulation. Furthermore, the formulated GBT elements are tested for shear and membrane locking problems and the limitations of the formulations regarding the membrane locking problem are discussed. N2 - Eine detaillierte Strukturanalyse dünnwandiger, kreisförmiger Rohrelemente erfordert oft die Verwendung von Schalenelementen in der Finite Elemente Methode. Diese Methode ermöglicht eine sehr gute Approximation des Verformungszustandes, erfordert jedoch einen hohen Grad der Diskretisierung, welcher wiederum einen hohen Rechenaufwand verursacht. Eine alternative Methode hierzu basiert auf klassischen Balkentheorien, welche eine einfache Modellierung ermöglichen und wesentlich geringeren Rechenaufwand erfordern. Diese weisen jedoch Einschränkungen bei der Approximation von Verformungen auf, da Querschnittsverformungen nicht berücksichtigt werden können. Schwerpunkt dieser Dissertation ist eine Untersuchung der Verallgemeinerten Technischen Biegetheorie (VTB), die sowohl eine genaue als auch eine effiziente Analyse von dünnwandigen Tragwerkselementen ermöglicht. Diese Theorie basiert auf einer Trennung der Variablen, in der das Verschiebungsfeld als eine Kombination von vorbestimmten Verformungsmoden der Querschnitts und unbekannten Amplitudenfunktionen in Längsrichtung ausgedrückt wird. Obwohl die VTB ursprünglich für lange, gerade Elemente entwickelt wurde, können durch die Berücksichtigung komplementärer Verformungsmoden, welche die Null-Annahmen der klassischen VTB für Quer- und Schubmembrandehnung abändern, Probleme mit kurzen Elementen, Rohrbögen und geometrischer Nichtlinearität analysiert werden. In dieser Dissertation wird die VTB-Formulierung für die Analyse dieser Probleme entwickelt. Die Anwendung und Möglichkeiten der Methode werden anhand mehrerer numerischer Beispiele veranschaulicht, deren Verschiebungs- und Spannungsfeldanalysen anhand eines äquivalenten, verfeinerten, schalenbasierten Finite-Elemente-Modells verifiziert werden. Die entwickelten statischen und dynamischen VTB-Formulierungen für Rohrbogenelemente basieren auf der linearen kinematischen Beschreibung der Theorie gekrümmter Schalen. In diesen Formulierungen wird das komplexe Problem in Rohrbögen aufgrund des starken Kopplungseffekts der Längsbiegung, der Verwölbung und der Querschnittsovalisierung durch die Herleitung der Kopplungstensoren zwischen den betrachteten VTB-Verformungsmoden präzise behandelt. In ähnlicher Weise wird die geometrisch nichtlineare VTB-Analyse für gerade Rohrelemente auf der Grundlage der nichtlinearen kinematischen Membrangleichungen formuliert. Die anfänglichen linearen und quadratischen Spannungs- und Verschiebungs-Tangentensteifigkeitsmatrizen werden dabei unter Verwendung der VTB-Kopplungstensoren dritter und vierter Ordnung aufgebaut. In Längsrichtung wird die Formulierung der gekoppelten VTB-Element-Steifigkeits- und Massenmatrizen unter Verwendung einer balkenbasierten Finite-Elemente Formulierung dargestellt. Weiterhin werden die VTB-Elemente auf Schub- und Membran-Locking-Probleme getestet und die Einschränkungen der Formulierungen bezüglich des Membran-Locking-Problems diskutiert. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2022,2 KW - Finite-Elemente-Methode KW - Dynamische Analyse KW - Generalized Beam Theory (GBT) KW - Finite Element Method KW - Dynamic Analysis KW - Geometrically nonlinear analysis KW - Curved thin-walled circular pipes Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220127-45723 ER - TY - CHAP A1 - Milbradt, Peter A1 - Schwöppe, Axel T1 - Finite Element Approximation auf der Basis geometrischer Zellen N2 - Die Methode der Finiten Elemente ist ein numerisches Verfahren zur Interpolation vorgegebener Werte und zur numerischen Approximation von Lösungen stationärer oder instationärer partieller Differentialgleichungen bzw. Systemen partieller Differentialgleichungen. Grundlage dieser Verfahren ist die Formulierung geeigneter Finiter Elemente und Finiter Element Zerlegungen. Finite Elemente besitzen in der Regel eine geometrische Basis bestehend aus Strecken im eindimensionalen, Drei- oder Vierecken im zweidimensionalen und Tetra- oder Hexaedern im dreidimensionalen euklidischen Raum, eine Menge von Freiheitsgraden und eine Basis von Funktionen. Die geometrische Basis eines Finiten Elements wird verallgemeinert als geometrische Zelle formuliert. Diese geschlossene geometrische Formulierung führt zu einer geometrieunabhängigen Definition der Basisfunktionen eines Finiten Elements in den Zellkoordinaten der geometrischen Zelle. Finite Elemente auf der Basis geometrischer Zellen werden als Bestandteile Finiter Element Zerlegungen in Finiten Element Interpolationen und Finiten Element Approximationen verwendet. Die Finiten Element Approximationen werden am Beispiel der 2-dimensionalen Diffusionsgleichung über das Standard-Galerkin-Verfahren ermittelt. KW - Finite-Elemente-Methode KW - Approximation Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-3333 ER - TY - JOUR A1 - Milbradt, Peter A1 - Schierbaum, Jochen A1 - Schwöppe, Axel T1 - Finite Cell-Elements of Higher Order N2 - The method of the finite elements is an adaptable numerical procedure for interpolation as well as for the numerical approximation of solutions of partial differential equations. The basis of these procedure is the formulation of suitable finite elements and element decompositions of the solution space. Classical finite elements are based on triangles or quadrangles in the two-dimensional space and tetrahedron or hexahedron in the threedimensional space. The use of arbitrary-dimensional convex and non-convex polyhedrons as the geometrical basis of finite elements increases the flexibility of generating finite element decompositions substantially and is sometimes the only way to get a clear decomposition... KW - Finite-Elemente-Methode KW - Physikalisches Verfahren Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2524 ER - TY - CHAP A1 - Berger, Hans A1 - Graeff-Weinberg, K. T1 - FEM-Detailuntersuchungen an Tragwerken unter Einsatz von pNh-Übergangselementen N2 - Detailuntersuchungen an Tragwerken führen bei FE-Berechnungen immer wieder auf das Problem einer geeigneten Netzgestaltung. Während in weiten Bereichen ein grobes Netz ausreicht, muß an kritischen Stellen ein sehr feines Netz gewählt werden, um gerade dort hinreichend genaue Ergebnisse zu erhalten. Bei der Realisierung lokaler Netzverdichtungen stellt die Gestaltung des Übergangs vom groben zum feinen Netz das Hauptproblem dar. Im Beitrag wird hierzu eine Familie von FE-Übergangselementen vorgestellt, mit denen sich eine voll-kompatible Kopplung von wenigen großen Elementen mit vielen kleinen Elementen bereits über nur eine Stufe erzielen läßt. Diese neu entwickelten sogenannten pNh-Elemente ermöglichen an einer oder mehreren Seiten den Anschluß von N kleineren Elementen (Elementseiten für h-Verfeinerung). Das wird durch N stückweise definierte Ansatzfunktionen an den entsprechenden Seiten erreicht, wobei die Teilung nicht äquidistant sein braucht. Darüber hinaus ist es möglich, Elemente unterschiedlichen Polynomgrades p an den Standardseiten und den Verfeinerungsseiten anzuschließen. Der praktische Einsatz der Übergangselemente setzt geeignete automatische oder halbautomatische Netzgeneratoren voraus, die diese Elemente einbeziehen. Im Rahmen einer substrukturorientierten Modellierung läßt sich dies besonders günstig realisieren. Im Beitrag wird gezeigt, wie durch Zerlegung des Gesamtmodells in Bereiche mit grobem Netz, mit Übergangsnetz und mit feinem Netz, eine effektive Generierung der Netzverdichtungen zu erreichen ist. An einem praktischen Beispiel aus dem Bauingenieurwesen werden die Vorteile des vorgestellten Übergangselementkonzeptes umfassend demonstriert. KW - Tragwerk KW - Modellierung KW - Finite-Elemente-Methode Y1 - 1997 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-4267 ER -