TY - INPR A1 - Zollmann, Stefanie A1 - Bimber, Oliver T1 - Imperceptible Calibration for Radiometric Compensation N2 - We present a novel multi-step technique for imperceptible geometry and radiometry calibration of projector-camera systems. Our approach can be used to display geometry and color corrected images on non-optimized surfaces at interactive rates while simultaneously performing a series of invisible structured light projections during runtime. It supports disjoint projector-camera configurations, fast and progressive improvements, as well as real-time correction rates of arbitrary graphical content. The calibration is automatically triggered when mis-registrations between camera, projector and surface are detected. KW - Association for Computing Machinery / Special Interest Group on Graphics KW - CGI KW - Maschinelles Sehen KW - unsichtbare Muster Projektion KW - Projektor-Kamera Systeme KW - Kalibrierung KW - Radiometrische Kompensation KW - imperceptible pattern projection KW - projector-camera systems KW - calibration KW - radiometric compensation Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-8094 ER - TY - CHAP A1 - Bimber, Oliver T1 - Projector-Based Augmentation T2 - Emerging Technologies of Augmented Reality: Interfaces & Design N2 - Projector-based augmentation approaches hold the potential of combining the advantages of well-establishes spatial virtual reality and spatial augmented reality. Immersive, semi-immersive and augmented visualizations can be realized in everyday environments – without the need for special projection screens and dedicated display configurations. Limitations of mobile devices, such as low resolution and small field of view, focus constrains, and ergonomic issues can be overcome in many cases by the utilization of projection technology. Thus, applications that do not require mobility can benefit from efficient spatial augmentations. Examples range from edutainment in museums (such as storytelling projections onto natural stone walls in historical buildings) to architectural visualizations (such as augmentations of complex illumination simulations or modified surface materials in real building structures). This chapter describes projector-camera methods and multi-projector techniques that aim at correcting geometric aberrations, compensating local and global radiometric effects, and improving focus properties of images projected onto everyday surfaces. KW - Erweiterte Realität KW - Virtuelle Realität KW - Projektionsverfahren KW - CGI KW - Bildbasiertes Rendering KW - Rendering KW - Projektor-Kamera Systeme KW - Multi-Projektor Systeme KW - projector-camera systems KW - multi-projector systems KW - spatial augmented reality Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-7353 ER - TY - RPRT A1 - Bimber, Oliver A1 - Iwai, Daisuke T1 - Superimposing Dynamic Range N2 - We present a simple and cost-efficient way of extending contrast, perceived tonal resolution, and the color space of static hardcopy images, beyond the capabilities of hardcopy devices or low-dynamic range displays alone. A calibrated projector-camera system is applied for automatic registration, scanning and superimposition of hardcopies. We explain how high-dynamic range content can be split for linear devices with different capabilities, how luminance quantization can be optimized with respect to the non-linear response of the human visual system as well as for the discrete nature of the applied modulation devices; and how inverse tone-mapping can be adapted in case only untreated hardcopies and softcopies (such as regular photographs) are available. We believe that our approach has the potential to complement hardcopy-based technologies, such as X-ray prints for filmless imaging, in domains that operate with high quality static image content, like radiology and other medical fields, or astronomy. KW - Bildverarbeitung KW - CGI KW - Computergraphik KW - Kontrast KW - Projektor-Kamera Systeme KW - Hoher Dynamikumfang KW - Contrast KW - Projector-Camera Systems KW - High Dynamic Range Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20080422-13585 ER - TY - RPRT A1 - Bimber, Oliver T1 - Superimposing Dynamic Range N2 - Replacing a uniform illumination by a high-frequent illumination enhances the contrast of observed and captured images. We modulate spatially and temporally multiplexed (projected) light with reflective or transmissive matter to achieve high dynamic range visualizations of radiological images on printed paper or ePaper, and to boost the optical contrast of images viewed or imaged with light microscopes. KW - Bildverarbeitung KW - CGI KW - Computergraphik KW - Kontrast KW - Projektor-Kamera Systeme KW - Hoher Dynamikumfang KW - Mikroskopie KW - Contrast KW - Projector-Camera Systems KW - High Dynamic Range KW - Microscopy Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20090303-14662 ER -