TY - JOUR A1 - Zhuang, Xiaoying A1 - Huang, Runqiu A1 - Rabczuk, Timon A1 - Liang, C. T1 - A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage JF - Mathematical Problems in Engineering N2 - A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 ER - TY - JOUR A1 - Zhuang, Xiaoying A1 - Huang, Runqiu A1 - Liang, Chao A1 - Rabczuk, Timon T1 - A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage JF - Mathematical Problems in Engineering N2 - Renewable energy resources such as wind and solar are intermittent, which causes instability when being connected to utility grid of electricity. Compressed air energy storage (CAES) provides an economic and technical viable solution to this problem by utilizing subsurface rock cavern to store the electricity generated by renewable energy in the form of compressed air. Though CAES has been used for over three decades, it is only restricted to salt rock or aquifers for air tightness reason. In this paper, the technical feasibility of utilizing hard rock for CAES is investigated by using a coupled thermo-hydro-mechanical (THM) modelling of nonisothermal gas flow. Governing equations are derived from the rules of energy balance, mass balance, and static equilibrium. Cyclic volumetric mass source and heat source models are applied to simulate the gas injection and production. Evaluation is carried out for intact rock and rock with discrete crack, respectively. In both cases, the heat and pressure losses using air mass control and supplementary air injection are compared. KW - Energiespeicherung KW - Druckluft KW - Kaverne KW - Modellierung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170428-31726 ER - TY - JOUR A1 - Zhao, Jun-Hua A1 - Wei, Ning A1 - Fan, Z. A1 - Jiang, Jin-Wu A1 - Rabczuk, Timon T1 - Mechanical properties of three types of carbon allotropes JF - Nanotechnology N2 - Mechanical properties of three types of carbon allotropes KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 ER - TY - JOUR A1 - Zhao, Jun-Hua A1 - Wang, L. A1 - Jiang, Jin-Wu A1 - Wang, Z. A1 - Guo, Wanlin A1 - Rabczuk, Timon T1 - A comparative study of two molecular mechanics models based on harmonic potentials JF - Journal of Applied Physics N2 - A comparative study of two molecular mechanics models based on harmonic potentials KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 ER - TY - JOUR A1 - Zhao, Jun-Hua A1 - Lu, Lixin A1 - Zhang, Zhiliang A1 - Guo, Wanlin A1 - Rabczuk, Timon T1 - Continuum modeling of the cohesive energy for the interfaces between _lms, spheres, coats and substrates JF - Computational Materials Science N2 - Continuum modeling of the cohesive energy for the interfaces between _lms, spheres, coats and substrates KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 432 EP - 438 ER - TY - JOUR A1 - Zhao, Jun-Hua A1 - Lu, Lixin A1 - Rabczuk, Timon T1 - Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines JF - The Journal of Chemical Physics N2 - Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 U6 - http://dx.doi.org/10.1063/1.4878115 ER - TY - JOUR A1 - Zhao, Jun-Hua A1 - Kou, Liangzhi A1 - Jiang, Jin-Wu A1 - Rabczuk, Timon T1 - Tension-induced phase transition of single-layer molybdenum disulphide (MoS2) at low temperatures JF - Nanotechnology N2 - Tension-induced phase transition of single-layer molybdenum disulphide (MoS2) at low temperatures KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 U6 - http://dx.doi.org/10.1088/0957-4484/25/29/295701 ER - TY - JOUR A1 - Zhao, Jun-Hua A1 - Jiang, Jin-Wu A1 - Jia, Yue A1 - Guo, Wanlin A1 - Rabczuk, Timon T1 - A theoretical analysis of cohesive energy between carbon nanotubes, graphene and substrates JF - Carbon N2 - Explicit solutions for the cohesive energy between carbon nanotubes, graphene and substrates are obtained through continuum modeling of the van der Waals interaction between them. The dependence of the cohesive energy on their size, spacing and crossing angles is analyzed. Checking against full atom molecular dynamics calculations and available experimental results shows that the continuum solution has high accuracy. The equilibrium distances between the nanotubes, graphene and substrates with minimum cohesive energy are also provided explicitly. The obtained analytical solution should be of great help for understanding the interaction between the nanostructures and substrates, and designing composites and nanoelectromechanical systems. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.carbon.2013.01.041 SP - 108 EP - 119 ER - TY - JOUR A1 - Zhao, Jun-Hua A1 - Jia, Yue A1 - Wei, Ning A1 - Rabczuk, Timon T1 - Binding energy and mechanical stability of two parallel and crossing carbon nanotubes JF - Journal of Applied Mechanics N2 - Binding energy and mechanical stability of two parallel and crossing carbon nanotubes KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 ER - TY - JOUR A1 - Zhao, Jun-Hua A1 - Guo, Wanlin A1 - Rabczuk, Timon T1 - An analytical molecular mechanics model for the elastic properties of crystalline polyethylene JF - Journal of Applied Physics N2 - We present an analytical model to relate the elastic properties of crystalline polyethylene based on a molecular mechanics approach. Along the polymer chains direction, the united-atom (UA) CH2-CH2 bond stretching, angle bending potentials are replaced with equivalent Euler-Bernoulli beams. Between any two polymer chains, the explicit formulae are derived for the van der Waals interaction represented by the linear springs of different stiffness. Then, the nine independent elastic constants are evaluated systematically using the formulae. The analytical model is finally validated by present united-atom molecular dynamics (MD) simulations and against available all-atom molecular dynamics results in the literature. The established analytical model provides an efficient route for mechanical characterization of crystalline polymers and related materials. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1063/1.4745035 ER - TY - JOUR A1 - Zhao, Jiyun A1 - Lu, Lixin A1 - Rabczuk, Timon T1 - The tensile and shear failure behavior dependence on chain length and temperature in amorphous polymers JF - Computational Materials Science N2 - The tensile and shear failure behavior dependence on chain length and temperature in amorphous polymers KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 567 EP - 572 ER - TY - JOUR A1 - Zhao, Jiyun A1 - Jiang, Jin-Wu A1 - Wang, L. A1 - Guo, Wanlin A1 - Rabczuk, Timon T1 - Coarse-grained potentials of single-walled carbon nanotubes JF - Journal of the Mechanics and Physics of Solids N2 - Coarse-grained potentials of single-walled carbon nanotubes KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 ER - TY - JOUR A1 - Zhang, Yancheng A1 - Zhuang, Xiaoying A1 - Muthu, Jacob A1 - Mabrouki, Tarek A1 - Fontaine, Michaël A1 - Gong, Yadong A1 - Rabczuk, Timon T1 - Load transfer of graphene/carbon nanotube/polyethylene hybrid nanocomposite by molecular dynamics simulation JF - Composites Part B Engineering N2 - Load transfer of graphene/carbon nanotube/polyethylene hybrid nanocomposite by molecular dynamics simulation KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 27 EP - 33 ER - TY - JOUR A1 - Zhang, Yancheng A1 - Zhao, Jun-Hua A1 - Jia, Yue A1 - Mabrouki, Tarek A1 - Gong, Yadong A1 - Wei, Ning A1 - Rabczuk, Timon T1 - An analytical solution on the interface debonding for large diameter carbon nanotube-reinforced composite with functionally graded variation interphase JF - Composite Structures N2 - An analytical solution on the interface debonding for large diameter carbon nanotube-reinforced composite with functionally graded variation interphase KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 SP - 261 EP - 269 ER - TY - JOUR A1 - Zhang, Yancheng A1 - Zhao, Jiyun A1 - Wei, Ning A1 - Jiang, Jin-Wu A1 - Rabczuk, Timon T1 - Effects of the dispersion of polymer wrapped two neighbouring single walled carbon nanotubes (SWNTs) on nanoengineering load transfer JF - Composites Part B: Engineering N2 - Effects of the dispersion of polymer wrapped two neighbouring single walled carbon nanotubes (SWNTs) on nanoengineering load transfer KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 SP - 1714 EP - 1721 ER - TY - JOUR A1 - Zhang, Yancheng A1 - Wei, Ning A1 - Zhao, Jun-Hua A1 - Gong, Yadong A1 - Rabczuk, Timon T1 - Quasi-analytical solution for the stable system of the multi-layer folded graphene wrinkles JF - Journal of Applied Physics N2 - Quasi-analytical solution for the stable system of the multi-layer folded graphene wrinkles KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 ER - TY - JOUR A1 - Zhang, Chao A1 - Wang, Cuixia A1 - Lahmer, Tom A1 - He, Pengfei A1 - Rabczuk, Timon T1 - A dynamic XFEM formulation for crack identification JF - International Journal of Mechanics and Materials in Design N2 - A dynamic XFEM formulation for crack identification KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2016 SP - 427 EP - 448 ER - TY - JOUR A1 - Zhang, Chao A1 - Nanthakumar, S.S. A1 - Lahmer, Tom A1 - Rabczuk, Timon T1 - Multiple cracks identification for piezoelectric structures JF - International Journal of Fracture N2 - Multiple cracks identification for piezoelectric structures KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2017 SP - 1 EP - 19 ER - TY - JOUR A1 - Zhang, Chao A1 - Hao, Xiao-Li A1 - Wang, Cuixia A1 - Wei, Ning A1 - Rabczuk, Timon T1 - Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation JF - Scientific Reports N2 - Tensile strain and compress strain can greatly affect the thermal conductivity of graphene nanoribbons (GNRs). However, the effect of GNRs under shear strain, which is also one of the main strain effect, has not been studied systematically yet. In this work, we employ reverse nonequilibrium molecular dynamics (RNEMD) to the systematical study of the thermal conductivity of GNRs (with model size of 4 nm × 15 nm) under the shear strain. Our studies show that the thermal conductivity of GNRs is not sensitive to the shear strain, and the thermal conductivity decreases only 12–16% before the pristine structure is broken. Furthermore, the phonon frequency and the change of the micro-structure of GNRs, such as band angel and bond length, are analyzed to explore the tendency of thermal conductivity. The results show that the main influence of shear strain is on the in-plane phonon density of states (PDOS), whose G band (higher frequency peaks) moved to the low frequency, thus the thermal conductivity is decreased. The unique thermal properties of GNRs under shear strains suggest their great potentials for graphene nanodevices and great potentials in the thermal managements and thermoelectric applications. KW - Wärmeleitfähigkeit KW - Graphen KW - Schubspannung Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170428-31718 ER - TY - JOUR A1 - Yang, Shih-Wei A1 - Budarapu, Pattabhi Ramaiah A1 - Mahapatra, D.R. A1 - Bordas, Stéphane Pierre Alain A1 - Zi, Goangseup A1 - Rabczuk, Timon T1 - A Meshless Adaptive Multiscale Method for Fracture JF - Computational Materials Science N2 - A Meshless Adaptive Multiscale Method for Fracture KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 382 EP - 395 ER -