TY - JOUR A1 - Nguyen-Thoi, T. A1 - Phung-Van, P. A1 - Rabczuk, Timon A1 - Nguyen-Xuan, Hung A1 - Le-Van, C. T1 - An application of the ES-FEM in solid domain for dynamic analysis of 2D fluid-solid interaction problems JF - International Journal of Computational Methods N2 - An application of the ES-FEM in solid domain for dynamic analysis of 2D fluid-solid interaction problems KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 ER - TY - JOUR A1 - Nguyen-Thoi, T. A1 - Phung-Van, P. A1 - Rabczuk, Timon A1 - Nguyen-Xuan, Hung A1 - Le-Van, C. T1 - Free and forced vibration analysis using the n-sided polygonal cell-based smoothed finite element method (nCS-FEM) JF - International Journal of Computational Methods N2 - Free and forced vibration analysis using the n-sided polygonal cell-based smoothed finite element method (nCS-FEM) KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 ER - TY - JOUR A1 - Nguyen-Thoi, T. A1 - Rabczuk, Timon A1 - Lam-Phat, T. A1 - Ho-Huu, V. A1 - Phung-Van, P. T1 - Free vibration analysis of cracked Mindlin plate using an extended cell-based smoothed discrete shear gap method (XCS-DSG3) JF - Theoretical and Applied Fracture Mechanics N2 - Free vibration analysis of cracked Mindlin plate using an extended cell-based smoothed discrete shear gap method (XCS-DSG3) KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 ER - TY - JOUR A1 - Nguyen-Vinh, H. A1 - Bakar, I. A1 - Msekh, Mohammed Abdulrazzak A1 - Song, Jeong-Hoon A1 - Muthu, Jacob A1 - Zi, Goangseup A1 - Le, P. A1 - Bordas, Stéphane Pierre Alain A1 - Simpson, R. A1 - Natarajan, S. A1 - Lahmer, Tom A1 - Rabczuk, Timon T1 - Extended Finite Element Method for Dynamic Fracture of Piezo-Electric Materials JF - Engineering Fracture Mechanics N2 - We present an extended finite element formulation for dynamic fracture of piezo-electric materials. The method is developed in the context of linear elastic fracture mechanics. It is applied to mode I and mixed mode-fracture for quasi-steady cracks. An implicit time integration scheme is exploited. The results are compared to results obtained with the boundary element method and show excellent agreement. KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.engfracmech.2012.04.025 SP - 19 EP - 31 ER - TY - JOUR A1 - Nguyen-Xuan, Hung A1 - Liu, G.R. A1 - Bordas, Stéphane Pierre Alain A1 - Natarajan, S. A1 - Rabczuk, Timon T1 - An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order JF - Computer Methods in Applied Mechanics and Engineering N2 - An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 SP - 252 EP - 273 ER - TY - JOUR A1 - Nguyen-Xuan, Hung A1 - Nguyen, Hiep Vinh A1 - Bordas, Stéphane Pierre Alain A1 - Rabczuk, Timon A1 - Duflot, Marc T1 - A cell-based smoothed finite element method for three dimensional solid structures JF - KSCE Journal of Civil Engineering N2 - This paper extends further the strain smoothing technique in finite elements to 8-noded hexahedral elements (CS-FEM-H8). The idea behind the present method is similar to the cell-based smoothed 4-noded quadrilateral finite elements (CS-FEM-Q4). In CSFEM, the smoothing domains are created based on elements, and each element can be further subdivided into 1 or several smoothing cells. It is observed that: 1) The CS-FEM using a single smoothing cell can produce higher stress accuracy, but insufficient rank and poor displacement accuracy; 2) The CS-FEM using several smoothing cells has proper rank, good displacement accuracy, but lower stress accuracy, especially for nearly incompressible and bending dominant problems. We therefore propose 1) an extension of strain smoothing to 8-noded hexahedral elements and 2) an alternative CS-FEM form, which associates the single smoothing cell issue with multi-smoothing cell one via a stabilization technique. Several numerical examples are provided to show the reliability and accuracy of the present formulation. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 U6 - http://dx.doi.org/10.1007/s12205-012-1515-7 SP - 1230 EP - 1242 ER - TY - JOUR A1 - Nguyen-Xuan, Hung A1 - Rabczuk, Timon A1 - Nguyen-Thanh, Nhon A1 - Nguyen-Thoi, T. A1 - Bordas, Stéphane Pierre Alain T1 - A node-based smoothed finite element method (NS-FEM) for analysis of Reissner-Mindlin plates JF - Computational Mechanics N2 - A node-based smoothed finite element method (NS-FEM) for analysis of Reissner-Mindlin plates KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2010 SP - 679 EP - 701 ER - TY - JOUR A1 - Nguyen-Xuan, Hung A1 - Rabczuk, Timon A1 - Nguyen-Thoi, T. A1 - Tran, T. A1 - Nguyen-Thanh, Nhon T1 - Computation of limit and shakedown loads using a node-based smoothed finite element method JF - International Journal for Numerical Methods in Engineering N2 - This paper presents a novel numerical procedure for computing limit and shakedown loads of structures using a node-based smoothed FEM in combination with a primal–dual algorithm. An associated primal–dual form based on the von Mises yield criterion is adopted. The primal-dual algorithm together with a Newton-like iteration are then used to solve this associated primal–dual form to determine simultaneously both approximate upper and quasi-lower bounds of the plastic collapse limit and the shakedown limit. The present formulation uses only linear approximations and its implementation into finite element programs is quite simple. Several numerical examples are given to show the reliability, accuracy, and generality of the present formulation compared with other available methods. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1002/nme.3317 SP - 287 EP - 310 ER - TY - JOUR A1 - Phan-Dao, H. A1 - Nguyen-Xuan, Hung A1 - Thai-Hoang, C. A1 - Nguyen-Thoi, T. A1 - Rabczuk, Timon T1 - An edge-based smoothed finite element method for analysis of laminated composite plates JF - International Journal of Computational Methods N2 - An edge-based smoothed finite element method for analysis of laminated composite plates KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 ER - TY - JOUR A1 - Rabizadeh, Ehsan A1 - Saboor Bagherzadeh, Amir A1 - Rabczuk, Timon T1 - Application of goal-oriented error estimation and adaptive mesh refinement on thermo-mechanical multifield problems JF - Computational Materials Science N2 - Application of goal-oriented error estimation and adaptive mesh re_nement on thermo-mechanical multi_eld problems KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 27 EP - 44 ER - TY - JOUR A1 - Silani, Mohammad A1 - Talebi, Hossein A1 - Arnold, Daniel A1 - Ziaei-Rad, S. A1 - Rabczuk, Timon T1 - On the coupling of a commercial finite element package with lammps for multiscale modeling of materials JF - Steel Research International N2 - On the coupling of a commercial finite element package with lammps for multiscale modeling of materials KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 ER - TY - JOUR A1 - Silani, Mohammad A1 - Talebi, Hossein A1 - Ziaei-Rad, S. A1 - Hamouda, A.M.S. A1 - Zi, Goangseup A1 - Rabczuk, Timon T1 - A three dimensional Extended Arlequin Method for Dynamic Fracture JF - Computational Materials Science N2 - A three dimensional Extended Arlequin Method for Dynamic Fracture KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 425 EP - 431 ER - TY - JOUR A1 - Silani, Mohammad A1 - Ziaei-Rad, S. A1 - Talebi, Hossein A1 - Rabczuk, Timon T1 - A Semi-Concurrent Multiscale Approach for Modeling Damage in Nanocomposites JF - Theoretical and Applied Fracture Mechanics N2 - A Semi-Concurrent Multiscale Approach for Modeling Damage in Nanocomposites KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 ER - TY - JOUR A1 - Simpson, R. A1 - Bordas, Stéphane Pierre Alain A1 - Trevelyan, J. A1 - Kerfriden, Pierre A1 - Rabczuk, Timon T1 - An Isogeometric Boundary Element Method for elastostatic analysis JF - Computer Methods in Applied Mechanics and Engineering N2 - The concept of isogeometric analysis, where functions that are used to describe geometry in CAD software are used to approximate the unknown fields in numerical simulations, has received great attention in recent years. The method has the potential to have profound impact on engineering design, since the task of meshing, which in some cases can add significant overhead, has been circumvented. Much of the research effort has been focused on finite element implementations of the isogeometric concept, but at present, little has been seen on the application to the Boundary Element Method. The current paper proposes an Isogeometric Boundary Element Method (BEM), which we term IGABEM, applied to two-dimensional elastostatic problems using Non-Uniform Rational B-Splines (NURBS). We find it is a natural fit with the isogeometric concept since both the NURBS approximation and BEM deal with quantities entirely on the boundary. The method is verified against analytical solutions where it is seen that superior accuracies are achieved over a conventional quadratic isoparametric BEM implementation. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.cma.2011.08.008 ER - TY - JOUR A1 - Talebi, Hossein A1 - Samaniego, C. A1 - Samaniego, Esteban A1 - Rabczuk, Timon T1 - On the numerical stability and mass-lumping schemes for explicit enriched meshfree methods JF - International Journal for Numerical Methods in Engineering N2 - Meshfree methods (MMs) such as the element free Galerkin (EFG)method have gained popularity because of some advantages over other numerical methods such as the finite element method (FEM). A group of problems that have attracted a great deal of attention from the EFG method community includes the treatment of large deformations and dealing with strong discontinuities such as cracks. One efficient solution to model cracks is adding special enrichment functions to the standard shape functions such as extended FEM, within the FEM context, and the cracking particles method, based on EFG method. It is well known that explicit time integration in dynamic applications is conditionally stable. Furthermore, in enriched methods, the critical time step may tend to very small values leading to computationally expensive simulations. In this work, we study the stability of enriched MMs and propose two mass-lumping strategies. Then we show that the critical time step for enriched MMs based on lumped mass matrices is of the same order as the critical time step of MMs without enrichment. Moreover, we show that, in contrast to extended FEM, even with a consistent mass matrix, the critical time step does not vanish even when the crack directly crosses a node. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1002/nme.3275 SP - 1009 EP - 1027 ER - TY - JOUR A1 - Talebi, Hossein A1 - Silani, Mohammad A1 - Bordas, Stéphane Pierre Alain A1 - Kerfriden, Pierre A1 - Rabczuk, Timon T1 - Molecular Dynamics/XFEM Coupling by a Three-Dimensional Extended Bridging Domain with Applications to Dynamic Brittle Fracture JF - International Journal for Multiscale Computational Engineering N2 - Molecular Dynamics/XFEM Coupling by a Three-Dimensional Extended Bridging Domain with Applications to Dynamic Brittle Fracture KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2013 ER - TY - JOUR A1 - Talebi, Hossein A1 - Silani, Mohammad A1 - Bordas, Stéphane Pierre Alain A1 - Kerfriden, Pierre A1 - Rabczuk, Timon T1 - A computational library for multiscale modeling of material failure JF - Computational Mechanics N2 - A computational library for multiscale modeling of material failure KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 ER - TY - JOUR A1 - Talebi, Hossein A1 - Silani, Mohammad A1 - Rabczuk, Timon T1 - Concurrent Multiscale Modelling of Three Dimensional Crack and Dislocation Propagation JF - Advances in Engineering Software N2 - Concurrent Multiscale Modelling of Three Dimensional Crack and Dislocation Propagation KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 82 EP - 92 ER - TY - JOUR A1 - Talebi, Hossein A1 - Zi, Goangseup A1 - Silani, Mohammad A1 - Samaniego, Esteban A1 - Rabczuk, Timon T1 - A simple circular cell method for multilevel finite element analysis JF - Journal of Applied Mathematics N2 - A simple multiscale analysis framework for heterogeneous solids based on a computational homogenization technique is presented. The macroscopic strain is linked kinematically to the boundary displacement of a circular or spherical representative volume which contains the microscopic information of the material. The macroscopic stress is obtained from the energy principle between the macroscopic scale and the microscopic scale. This new method is applied to several standard examples to show its accuracy and consistency of the method proposed. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1155/2012/526846 ER - TY - JOUR A1 - Thai, Chien H. A1 - Ferreira, A.J.M. A1 - Bordas, Stéphane Pierre Alain A1 - Rabczuk, Timon A1 - Nguyen-Xuan, Hung T1 - Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory JF - European Journal of Mechanics N2 - Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 89 EP - 108 ER -