TY - JOUR A1 - Mousavi, Seyed Nasrollah A1 - Steinke Júnior, Renato A1 - Teixeira, Eder Daniel A1 - Bocchiola, Daniele A1 - Nabipour, Narjes A1 - Mosavi, Amir A1 - Shamshirband, Shahaboddin T1 - Predictive Modeling the Free Hydraulic Jumps Pressure through Advanced Statistical Methods JF - Mathematics N2 - Pressure fluctuations beneath hydraulic jumps potentially endanger the stability of stilling basins. This paper deals with the mathematical modeling of the results of laboratory-scale experiments to estimate the extreme pressures. Experiments were carried out on a smooth stilling basin underneath free hydraulic jumps downstream of an Ogee spillway. From the probability distribution of measured instantaneous pressures, pressures with different probabilities could be determined. It was verified that maximum pressure fluctuations, and the negative pressures, are located at the positions near the spillway toe. Also, minimum pressure fluctuations are located at the downstream of hydraulic jumps. It was possible to assess the cumulative curves of pressure data related to the characteristic points along the basin, and different Froude numbers. To benchmark the results, the dimensionless forms of statistical parameters include mean pressures (P*m), the standard deviations of pressure fluctuations (σ*X), pressures with different non-exceedance probabilities (P*k%), and the statistical coefficient of the probability distribution (Nk%) were assessed. It was found that an existing method can be used to interpret the present data, and pressure distribution in similar conditions, by using a new second-order fractional relationships for σ*X, and Nk%. The values of the Nk% coefficient indicated a single mean value for each probability. KW - Maschinelles Lernen KW - Machine learning KW - mathematical modeling KW - extreme pressure KW - hydraulic jump KW - stilling basin KW - standard deviation of pressure fluctuations KW - statistical coeffcient of the probability distribution Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200402-41140 UR - https://www.mdpi.com/2227-7390/8/3/323 VL - 2020 IS - Volume 8, Issue 3, 323 PB - MDPI CY - Basel ER - TY - JOUR A1 - Jilte, Ravindra A1 - Ahmadi, Mohammad Hossein A1 - Kumar, Ravinder A1 - Kalamkar, Vilas A1 - Mosavi, Amir T1 - Cooling Performance of a Novel Circulatory Flow Concentric Multi-Channel Heat Sink with Nanofluids JF - Nanomaterials N2 - Heat rejection from electronic devices such as processors necessitates a high heat removal rate. The present study focuses on liquid-cooled novel heat sink geometry made from four channels (width 4 mm and depth 3.5 mm) configured in a concentric shape with alternate flow passages (slot of 3 mm gap). In this study, the cooling performance of the heat sink was tested under simulated controlled conditions.The lower bottom surface of the heat sink was heated at a constant heat flux condition based on dissipated power of 50 W and 70 W. The computations were carried out for different volume fractions of nanoparticles, namely 0.5% to 5%, and water as base fluid at a flow rate of 30 to 180 mL/min. The results showed a higher rate of heat rejection from the nanofluid cooled heat sink compared with water. The enhancement in performance was analyzed with the help of a temperature difference of nanofluid outlet temperature and water outlet temperature under similar operating conditions. The enhancement was ~2% for 0.5% volume fraction nanofluids and ~17% for a 5% volume fraction. KW - Nanostrukturiertes Material KW - Kühlkörper KW - Nasskühlung KW - nanofluid KW - Nanomaterials KW - Machine learning KW - heat sink Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200401-41241 UR - https://www.mdpi.com/2079-4991/10/4/647 VL - 2020 IS - Volume 10, Issue 4, 647 PB - MDPI CY - Basel ER - TY - JOUR A1 - Fathi, Sadegh A1 - Sajadzadeh, Hassan A1 - Mohammadi Sheshkal, Faezeh A1 - Aram, Farshid A1 - Pinter, Gergo A1 - Felde, Imre A1 - Mosavi, Amir T1 - The Role of Urban Morphology Design on Enhancing Physical Activity and Public Health JF - International Journal of Environmental Research and Public Health N2 - Along with environmental pollution, urban planning has been connected to public health. The research indicates that the quality of built environments plays an important role in reducing mental disorders and overall health. The structure and shape of the city are considered as one of the factors influencing happiness and health in urban communities and the type of the daily activities of citizens. The aim of this study was to promote physical activity in the main structure of the city via urban design in a way that the main form and morphology of the city can encourage citizens to move around and have physical activity within the city. Functional, physical, cultural-social, and perceptual-visual features are regarded as the most important and effective criteria in increasing physical activities in urban spaces, based on literature review. The environmental quality of urban spaces and their role in the physical activities of citizens in urban spaces were assessed by using the questionnaire tool and analytical network process (ANP) of structural equation modeling. Further, the space syntax method was utilized to evaluate the role of the spatial integration of urban spaces on improving physical activities. Based on the results, consideration of functional diversity, spatial flexibility and integration, security, and the aesthetic and visual quality of urban spaces plays an important role in improving the physical health of citizens in urban spaces. Further, more physical activities, including motivation for walking and the sense of public health and happiness, were observed in the streets having higher linkage and space syntax indexes with their surrounding texture. KW - Morphologie KW - Gesundheitswesen KW - Intelligente Stadt KW - Nachhaltigkeit KW - Gesundheitsinformationssystem KW - urban morphology KW - public health KW - physical activities KW - health KW - public space KW - urban health KW - smart cities KW - sustainability Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200402-41225 UR - https://www.mdpi.com/1660-4601/17/7/2359 VL - 2020 IS - Volume 17, Issue 7, 2359 PB - MDPI CY - Basel ER - TY - JOUR A1 - Shabani, Sevda A1 - Samadianfard, Saeed A1 - Sattari, Mohammad Taghi A1 - Mosavi, Amir A1 - Shamshirband, Shahaboddin A1 - Kmet, Tibor A1 - Várkonyi-Kóczy, Annamária R. T1 - Modeling Pan Evaporation Using Gaussian Process Regression K-Nearest Neighbors Random Forest and Support Vector Machines; Comparative Analysis JF - Atmosphere N2 - Evaporation is a very important process; it is one of the most critical factors in agricultural, hydrological, and meteorological studies. Due to the interactions of multiple climatic factors, evaporation is considered as a complex and nonlinear phenomenon to model. Thus, machine learning methods have gained popularity in this realm. In the present study, four machine learning methods of Gaussian Process Regression (GPR), K-Nearest Neighbors (KNN), Random Forest (RF) and Support Vector Regression (SVR) were used to predict the pan evaporation (PE). Meteorological data including PE, temperature (T), relative humidity (RH), wind speed (W), and sunny hours (S) collected from 2011 through 2017. The accuracy of the studied methods was determined using the statistical indices of Root Mean Squared Error (RMSE), correlation coefficient (R) and Mean Absolute Error (MAE). Furthermore, the Taylor charts utilized for evaluating the accuracy of the mentioned models. The results of this study showed that at Gonbad-e Kavus, Gorgan and Bandar Torkman stations, GPR with RMSE of 1.521 mm/day, 1.244 mm/day, and 1.254 mm/day, KNN with RMSE of 1.991 mm/day, 1.775 mm/day, and 1.577 mm/day, RF with RMSE of 1.614 mm/day, 1.337 mm/day, and 1.316 mm/day, and SVR with RMSE of 1.55 mm/day, 1.262 mm/day, and 1.275 mm/day had more appropriate performances in estimating PE values. It was found that GPR for Gonbad-e Kavus Station with input parameters of T, W and S and GPR for Gorgan and Bandar Torkmen stations with input parameters of T, RH, W and S had the most accurate predictions and were proposed for precise estimation of PE. The findings of the current study indicated that the PE values may be accurately estimated with few easily measured meteorological parameters. KW - Maschinelles Lernen KW - Machine learning KW - Deep learning Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200110-40561 UR - https://www.mdpi.com/2073-4433/11/1/66 VL - 2020 IS - Volume 11, Issue 1, 66 ER - TY - JOUR A1 - Abbaspour-Gilandeh, Yousef A1 - Molaee, Amir A1 - Sabzi, Sajad A1 - Nabipour, Narjes A1 - Shamshirband, Shahaboddin A1 - Mosavi, Amir T1 - A Combined Method of Image Processing and Artificial Neural Network for the Identification of 13 Iranian Rice Cultivars JF - agronomy N2 - Due to the importance of identifying crop cultivars, the advancement of accurate assessment of cultivars is considered essential. The existing methods for identifying rice cultivars are mainly time-consuming, costly, and destructive. Therefore, the development of novel methods is highly beneficial. The aim of the present research is to classify common rice cultivars in Iran based on color, morphologic, and texture properties using artificial intelligence (AI) methods. In doing so, digital images of 13 rice cultivars in Iran in three forms of paddy, brown, and white are analyzed through pre-processing and segmentation of using MATLAB. Ninety-two specificities, including 60 color, 14 morphologic, and 18 texture properties, were identified for each rice cultivar. In the next step, the normal distribution of data was evaluated, and the possibility of observing a significant difference between all specificities of cultivars was studied using variance analysis. In addition, the least significant difference (LSD) test was performed to obtain a more accurate comparison between cultivars. To reduce data dimensions and focus on the most effective components, principal component analysis (PCA) was employed. Accordingly, the accuracy of rice cultivar separations was calculated for paddy, brown rice, and white rice using discriminant analysis (DA), which was 89.2%, 87.7%, and 83.1%, respectively. To identify and classify the desired cultivars, a multilayered perceptron neural network was implemented based on the most effective components. The results showed 100% accuracy of the network in identifying and classifying all mentioned rice cultivars. Hence, it is concluded that the integrated method of image processing and pattern recognition methods, such as statistical classification and artificial neural networks, can be used for identifying and classification of rice cultivars. KW - Maschinelles Lernen KW - Machine learning KW - food informatics KW - big data KW - artificial neural networks KW - artificial intelligence KW - image processing KW - rice Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200123-40695 UR - https://www.mdpi.com/2073-4395/10/1/117 VL - 2020 IS - Volume 10, Issue 1, 117 PB - MDPI ER - TY - JOUR A1 - Faroughi, Maryam A1 - Karimimoshaver, Mehrdad A1 - Aram, Farshid A1 - Solgi, Ebrahim A1 - Mosavi, Amir A1 - Nabipour, Narjes A1 - Chau, Kwok-Wing T1 - Computational modeling of land surface temperature using remote sensing data to investigate the spatial arrangement of buildings and energy consumption relationship JF - Engineering Applications of Computational Fluid Mechanics N2 - The effect of urban form on energy consumption has been the subject of various studies around the world. Having examined the effect of buildings on energy consumption, these studies indicate that the physical form of a city has a notable impact on the amount of energy consumed in its spaces. The present study identified the variables that affected energy consumption in residential buildings and analyzed their effects on energy consumption in four neighborhoods in Tehran: Apadana, Bimeh, Ekbatan-phase I, and Ekbatan-phase II. After extracting the variables, their effects are estimated with statistical methods, and the results are compared with the land surface temperature (LST) remote sensing data derived from Landsat 8 satellite images taken in the winter of 2019. The results showed that physical variables, such as the size of buildings, population density, vegetation cover, texture concentration, and surface color, have the greatest impacts on energy usage. For the Apadana neighborhood, the factors with the most potent effect on energy consumption were found to be the size of buildings and the population density. However, for other neighborhoods, in addition to these two factors, a third factor was also recognized to have a significant effect on energy consumption. This third factor for the Bimeh, Ekbatan-I, and Ekbatan-II neighborhoods was the type of buildings, texture concentration, and orientation of buildings, respectively. KW - Fernerkung KW - Intelligente Stadt KW - Oberflächentemperatur KW - remote sensing KW - smart cities KW - Land surface temperature KW - energy consumption KW - residential buildings KW - urban morphology KW - urban sustainability Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200110-40585 UR - https://www.tandfonline.com/doi/full/10.1080/19942060.2019.1707711 VL - 2020 IS - Volume 14, No. 1 SP - 254 EP - 270 PB - Taylor & Francis ER - TY - JOUR A1 - Nabipour, Narjes A1 - Mosavi, Amir A1 - Baghban, Alireza A1 - Shamshirband, Shahaboddin A1 - Felde, Imre T1 - Extreme Learning Machine-Based Model for Solubility Estimation of Hydrocarbon Gases in Electrolyte Solutions JF - Processes N2 - Calculating hydrocarbon components solubility of natural gases is known as one of the important issues for operational works in petroleum and chemical engineering. In this work, a novel solubility estimation tool has been proposed for hydrocarbon gases—including methane, ethane, propane, and butane—in aqueous electrolyte solutions based on extreme learning machine (ELM) algorithm. Comparing the ELM outputs with a comprehensive real databank which has 1175 solubility points yielded R-squared values of 0.985 and 0.987 for training and testing phases respectively. Furthermore, the visual comparison of estimated and actual hydrocarbon solubility led to confirm the ability of proposed solubility model. Additionally, sensitivity analysis has been employed on the input variables of model to identify their impacts on hydrocarbon solubility. Such a comprehensive and reliable study can help engineers and scientists to successfully determine the important thermodynamic properties, which are key factors in optimizing and designing different industrial units such as refineries and petrochemical plants. KW - Maschinelles Lernen KW - Machine learning KW - Deep learning Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200113-40624 UR - https://www.mdpi.com/2227-9717/8/1/92 VL - 2020 IS - Volume 8, Issue 1, 92 PB - MDPI ER - TY - JOUR A1 - Lashkar-Ara, Babak A1 - Kalantari, Niloofar A1 - Sheikh Khozani, Zohreh A1 - Mosavi, Amir T1 - Assessing Machine Learning versus a Mathematical Model to Estimate the Transverse Shear Stress Distribution in a Rectangular Channel JF - Mathematics N2 - One of the most important subjects of hydraulic engineering is the reliable estimation of the transverse distribution in the rectangular channel of bed and wall shear stresses. This study makes use of the Tsallis entropy, genetic programming (GP) and adaptive neuro-fuzzy inference system (ANFIS) methods to assess the shear stress distribution (SSD) in the rectangular channel. To evaluate the results of the Tsallis entropy, GP and ANFIS models, laboratory observations were used in which shear stress was measured using an optimized Preston tube. This is then used to measure the SSD in various aspect ratios in the rectangular channel. To investigate the shear stress percentage, 10 data series with a total of 112 different data for were used. The results of the sensitivity analysis show that the most influential parameter for the SSD in smooth rectangular channel is the dimensionless parameter B/H, Where the transverse coordinate is B, and the flow depth is H. With the parameters (b/B), (B/H) for the bed and (z/H), (B/H) for the wall as inputs, the modeling of the GP was better than the other one. Based on the analysis, it can be concluded that the use of GP and ANFIS algorithms is more effective in estimating shear stress in smooth rectangular channels than the Tsallis entropy-based equations. KW - Maschinelles Lernen KW - smooth rectangular channel KW - Tsallis entropy KW - genetic programming KW - artificial intelligence KW - machine learning KW - big data KW - computational hydraulics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210504-44197 UR - https://www.mdpi.com/2227-7390/9/6/596 VL - 2021 IS - Volume 9, Issue 6, Article 596 PB - MDPI CY - Basel ER -