TY - JOUR A1 - Rabczuk, Timon A1 - Guo, Hongwei A1 - Zhuang, Xiaoying A1 - Chen, Pengwan A1 - Alajlan, Naif T1 - Stochastic deep collocation method based on neural architecture search and transfer learning for heterogeneous porous media JF - Engineering with Computers N2 - We present a stochastic deep collocation method (DCM) based on neural architecture search (NAS) and transfer learning for heterogeneous porous media. We first carry out a sensitivity analysis to determine the key hyper-parameters of the network to reduce the search space and subsequently employ hyper-parameter optimization to finally obtain the parameter values. The presented NAS based DCM also saves the weights and biases of the most favorable architectures, which is then used in the fine-tuning process. We also employ transfer learning techniques to drastically reduce the computational cost. The presented DCM is then applied to the stochastic analysis of heterogeneous porous material. Therefore, a three dimensional stochastic flow model is built providing a benchmark to the simulation of groundwater flow in highly heterogeneous aquifers. The performance of the presented NAS based DCM is verified in different dimensions using the method of manufactured solutions. We show that it significantly outperforms finite difference methods in both accuracy and computational cost. KW - Maschinelles Lernen KW - Neuronales Lernen KW - Fehlerabschätzung KW - deep learning KW - neural architecture search KW - randomized spectral representation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220209-45835 UR - https://link.springer.com/article/10.1007/s00366-021-01586-2 VL - 2022 SP - 1 EP - 26 PB - Springer CY - London ER - TY - JOUR A1 - Patzelt, Max A1 - Erfurt, Doreen A1 - Ludwig, Horst-Michael T1 - Quantification of cracks in concrete thin sections considering current methods of image analysis JF - Journal of Microscopy N2 - Image analysis is used in this work to quantify cracks in concrete thin sections via modern image processing. Thin sections were impregnated with a yellow epoxy resin, to increase the contrast between voids and other phases of the concrete. By the means of different steps of pre-processing, machine learning and python scripts, cracks can be quantified in an area of up to 40 cm2. As a result, the crack area, lengths and widths were estimated automatically within a single workflow. Crack patterns caused by freeze-thaw damages were investigated. To compare the inner degradation of the investigated thin sections, the crack density was used. Cracks in the thin sections were measured manually in two different ways for validation of the automatic determined results. On the one hand, the presented work shows that the width of cracks can be determined pixelwise, thus providing the plot of a width distribution. On the other hand, the automatically measured crack length differs in comparison to the manually measured ones. KW - Beton KW - Rissbildung KW - Bildanalyse KW - Maschinelles Lernen KW - Mikroskopie KW - concrete KW - crack KW - degradation KW - transmitted light microscopy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220811-46754 UR - https://onlinelibrary.wiley.com/doi/full/10.1111/jmi.13091 VL - 2022 IS - Volume 286, Issue 2 SP - 154 EP - 159 ER - TY - JOUR A1 - Kumari, Vandana A1 - Harirchian, Ehsan A1 - Lahmer, Tom A1 - Rasulzade, Shahla T1 - Evaluation of Machine Learning and Web-Based Process for Damage Score Estimation of Existing Buildings JF - Buildings N2 - The seismic vulnerability assessment of existing reinforced concrete (RC) buildings is a significant source of disaster mitigation plans and rescue services. Different countries evolved various Rapid Visual Screening (RVS) techniques and methodologies to deal with the devastating consequences of earthquakes on the structural characteristics of buildings and human casualties. Artificial intelligence (AI) methods, such as machine learning (ML) algorithm-based methods, are increasingly used in various scientific and technical applications. The investigation toward using these techniques in civil engineering applications has shown encouraging results and reduced human intervention, including uncertainties and biased judgment. In this study, several known non-parametric algorithms are investigated toward RVS using a dataset employing different earthquakes. Moreover, the methodology encourages the possibility of examining the buildings’ vulnerability based on the factors related to the buildings’ importance and exposure. In addition, a web-based application built on Django is introduced. The interface is designed with the idea to ease the seismic vulnerability investigation in real-time. The concept was validated using two case studies, and the achieved results showed the proposed approach’s potential efficiency KW - Maschinelles Lernen KW - rapid assessment KW - Machine learning KW - Vulnerability assessment KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220509-46387 UR - https://www.mdpi.com/2075-5309/12/5/578 VL - 2022 IS - Volume 12, issue 5, article 578 SP - 1 EP - 23 PB - MDPI CY - Basel ER - TY - JOUR A1 - Chakraborty, Ayan A1 - Anitescu, Cosmin A1 - Zhuang, Xiaoying A1 - Rabczuk, Timon T1 - Domain adaptation based transfer learning approach for solving PDEs on complex geometries JF - Engineering with Computers N2 - In machine learning, if the training data is independently and identically distributed as the test data then a trained model can make an accurate predictions for new samples of data. Conventional machine learning has a strong dependence on massive amounts of training data which are domain specific to understand their latent patterns. In contrast, Domain adaptation and Transfer learning methods are sub-fields within machine learning that are concerned with solving the inescapable problem of insufficient training data by relaxing the domain dependence hypothesis. In this contribution, this issue has been addressed and by making a novel combination of both the methods we develop a computationally efficient and practical algorithm to solve boundary value problems based on nonlinear partial differential equations. We adopt a meshfree analysis framework to integrate the prevailing geometric modelling techniques based on NURBS and present an enhanced deep collocation approach that also plays an important role in the accuracy of solutions. We start with a brief introduction on how these methods expand upon this framework. We observe an excellent agreement between these methods and have shown that how fine-tuning a pre-trained network to a specialized domain may lead to an outstanding performance compare to the existing ones. As proof of concept, we illustrate the performance of our proposed model on several benchmark problems. KW - Maschinelles Lernen KW - NURBS KW - Transfer learning KW - Domain Adaptation KW - NURBS geometry KW - Navier–Stokes equations Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220811-46776 UR - https://link.springer.com/article/10.1007/s00366-022-01661-2 VL - 2022 SP - 1 EP - 20 ER - TY - JOUR A1 - Artus, Mathias A1 - Alabassy, Mohamed Said Helmy A1 - Koch, Christian T1 - A BIM Based Framework for Damage Segmentation, Modeling, and Visualization Using IFC JF - Applied Sciences N2 - Paper-based data acquisition and manual transfer between incompatible software or data formats during inspections of bridges, as done currently, are time-consuming, error-prone, cumbersome, and lead to information loss. A fully digitized workflow using open data formats would reduce data loss, efforts, and the costs of future inspections. On the one hand, existing studies proposed methods to automatize data acquisition and visualization for inspections. These studies lack an open standard to make the gathered data available for other processes. On the other hand, several studies discuss data structures for exchanging damage information among different stakeholders. However, those studies do not cover the process of automatic data acquisition and transfer. This study focuses on a framework that incorporates automatic damage data acquisition, transfer, and a damage information model for data exchange. This enables inspectors to use damage data for subsequent analyses and simulations. The proposed framework shows the potentials for a comprehensive damage information model and related (semi-)automatic data acquisition and processing. KW - Building Information Modeling KW - Brücke KW - Inspektion KW - Maschinelles Lernen KW - Bildverarbeitung KW - Building Information Modeling KW - Bridge KW - Inspection KW - Damage Segmentation KW - Machine Learning KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220314-46059 UR - https://www.mdpi.com/2076-3417/12/6/2772 VL - 2022 IS - volume 12, issue 6, article 2772 SP - 1 EP - 24 PB - MDPI CY - Basel ER -