TY - JOUR A1 - Nagel, Falk A1 - Simon, Flaviu A1 - Kümmel, Benjamin A1 - Bergmann, Jean Pierre A1 - Hildebrand, Jörg T1 - Optimization Strategies for Laser Welding High Alloy Steel Sheets JF - Physics Procedia N2 - A known phenomenon during laser welding of thin sheets is the deformation caused by thermally induced stresses. This deformation can result in a change of the gap width between the welded parts, which leads to an unstable welding process. Inducing displacements by using a second heat source will compensate for the change in gap width, hence optimizing the welding process. The base material is 1 mm thick austenitic stainless steel 1.4301, which is welded by a CO2 laser. The second heat source is a diode laser. The gap between the welded parts was set between 0.05 mm and 0.1 mm. The influence of the second heat source on the welding process and the welding result is described. The usage of a second heat source allows a higher gap width to be set prior to the welding process. The results of the numerical simulation were found to be corresponding to those of the experiments. KW - Edelstahl KW - Laserschweißen KW - Laser Welding; CO2; Diode; Distortion; Finite Element Analysis; Thermal Analysis; Mechanical Analysis; Numerical Model Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170425-31554 SP - 1242 EP - 1251 ER - TY - JOUR A1 - Lahmer, Tom A1 - Bock, Sebastian A1 - Hildebrand, Jörg A1 - Gürlebeck, Klaus T1 - Non-destructive identification of residual stresses in steel under thermal loadings JF - Inverse Problems in Science and Engineering N2 - Non-destructive identification of residual stresses in steel under thermal loadings KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2016 SP - 1 EP - 17 ER - TY - JOUR A1 - Hildebrand, Jörg A1 - Hecht, Kerstin A1 - Bliedtner, Jens A1 - Müller, Hartmut T1 - Laser Beam Polishing of Quartz Glass Surfaces JF - Physics Procedia N2 - The laser beam is a small, flexible and fast polishing tool. With laser radiation it is possible to finish many outlines or geometries on quartz glass surfaces in the shortest possible time. It's a fact that the temperature developing while polishing determines the reachable surface smoothing and, as a negative result, causes material tensions. To find out which parameters are important for the laser polishing process and the surface roughness respectively and to estimate material tensions, temperature simulations and extensive polishing experiments took place. During these experiments starting and machining parameters were changed and temperatures were measured contact-free. KW - Laser KW - Quarzglas KW - Polieren KW - Berührungslose Messung KW - Temperatur KW - Laser; quartz glass; polishing; temperature; residual stress; simulation; contactless measurement Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170418-31366 UR - http://www.sciencedirect.com/science/article/pii/S1875389211001350 SP - 452 EP - 461 ER - TY - JOUR A1 - Joshi, Suraj A1 - Hildebrand, Jörg A1 - Aloraier, Abdulkareem S. A1 - Rabczuk, Timon T1 - Characterization of material properties and heat source parameters in welding simulation of two overlapping beads on a substrate plate JF - Computational Materials Science N2 - This paper presents several aspects of characterization of welding heat source parameters in Goldak’s double ellipsoidal model using Sysweld simulation of welding of two overlapping beads on a substrate steel plate. The overlap percentages ranged from 40% to 80% in increments of 10%. The new material properties of the fused metal were characterized using Weldware and their continuous cooling transformation curves. The convective and radiative heat transfer coefficients as well as the cooling time t8/5 were estimated using numerical formulations from relevant standards. The effects of the simulation geometry and mesh discretization were evaluated in terms of the factor F provided in Sysweld. Eventually, the parameters of Goldak’s double ellipsoidal heat source model were determined for the welding simulation of overlapping beads on the plate and the simulated bead geometry, extent of the molten pool and the HAZ were compared with the macrographs of cross-sections of the experimental weldments. The results showed excellent matching, thus verifying this methodology for determination of welding heat source parameters. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.commatsci.2012.11.029 SP - 559 EP - 565 ER - TY - JOUR A1 - Motra, Hem Bahadur A1 - Hildebrand, Jörg A1 - Dimmig-Osburg, Andrea T1 - Assessment of strain measurement techniques to characterise mechanical properties of structural steel JF - Engineering Science and Technology, an International Journal N2 - Strain measurement is important in mechanical testing. A wide variety of techniques exists for measuring strain in the tensile test; namely the strain gauge, extensometer, stress and strain determined by machine crosshead motion, Geometric Moire technique, optical strain measurement techniques and others. Each technique has its own advantages and disadvantages. The purpose of this study is to quantitatively compare the strain measurement techniques. To carry out the tensile test experiments for S 235, sixty samples were cut from the web of the I-profile in longitudinal and transverse directions in four different dimensions. The geometry of samples are analysed by 3D scanner and vernier caliper. In addition, the strain values were determined by using strain gauge, extensometer and machine crosshead motion. Three techniques of strain measurement are compared in quantitative manner based on the calculation of mechanical properties (modulus of elasticity, yield strength, tensile strength, percentage elongation at maximum force) of structural steel. A statistical information was used for evaluating the results. It is seen that the extensometer and strain gauge provided reliable data, however the extensometer offers several advantages over the strain gauge and crosshead motion for testing structural steel in tension. Furthermore, estimation of measurement uncertainty is presented for the basic material parameters extracted through strain measurement. KW - Baustahl KW - Werkstoffprüfung KW - Zugversuch KW - Affecting factors; Measurement uncertainty; Materials testing; Quantitative comparison; Strain comparison; Tensile test Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170425-31540 SP - 260 EP - 269 ER - TY - JOUR A1 - Hildebrand, Jörg A1 - Hecht, Kerstin A1 - Bliedtner, Jens A1 - Müller, Hartmut T1 - Advanced Analysis of Laser Beam Polishing of Quartz Glass Surfaces JF - Physics Procedia N2 - The laser beam is a small, flexible and fast polishing tool. With laser radiation it is possible to finish many outlines or geometries on quartz glass surfaces in the shortest possible time. It’s a fact that the temperature developing while polishing determines the reachable surface smoothing and, as a negative result, causes material tensions. To find out which parameters are important for the laser polishing process and the surface roughness respectively and to estimate material tensions, temperature simulations and extensive polishing experiments took place. During these experiments starting and machining parameters were changed and temperatures were measured contact-free. The accuracy of thermal and mechanical simulation was improved in the case of advanced FE-analysis. KW - Laser KW - Berührungslose Messung KW - Polieren KW - Empfindlichkeit KW - Quarzglas KW - laser; contactless measurement; quartz glass; polishing; temperature; residual stress; simulation; sensitivity Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170418-31372 UR - http://www.sciencedirect.com/science/article/pii/S1875389212025667 SP - 277 EP - 285 ER -