TY - JOUR A1 - Kreskowski, Adrian A1 - Rendle, Gareth A1 - Fröhlich, Bernd T1 - Efficient Direct Isosurface Rasterization of Scalar Volumes JF - Computer Graphics Forum N2 - In this paper we propose a novel and efficient rasterization-based approach for direct rendering of isosurfaces. Our method exploits the capabilities of task and mesh shader pipelines to identify subvolumes containing potentially visible isosurface geometry, and to efficiently extract primitives which are consumed on the fly by the rasterizer. As a result, our approach requires little preprocessing and negligible additional memory. Direct isosurface rasterization is competitive in terms of rendering performance when compared with ray-marching-based approaches, and significantly outperforms them for increasing resolution in most situations. Since our approach is entirely rasterization based, it affords straightforward integration into existing rendering pipelines, while allowing the use of modern graphics hardware features, such as multi-view stereo for efficient rendering of stereoscopic image pairs for geometry-bound applications. Direct isosurface rasterization is suitable for applications where isosurface geometry is highly variable, such as interactive analysis scenarios for static and dynamic data sets that require frequent isovalue adjustment. KW - Rendering KW - Rastergrafik KW - Visualisierung KW - Maschinelles Sehen KW - isosurface KW - rendering KW - rasterization Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230525-63835 UR - https://onlinelibrary.wiley.com/doi/full/10.1111/cgf.14670 VL - 2022 IS - Volume 4, Issue 7 SP - 215 EP - 226 PB - Wiley Blackwell CY - Oxford ER - TY - JOUR A1 - Grundhöfer, Anselm A1 - Seeger, Manja A1 - Häntsch, Ferry A1 - Bimber, Oliver T1 - Coded Projection and Illumination for Television Studios N2 - We propose the application of temporally and spatially coded projection and illumination in modern television studios. In our vision, this supports ad-hoc re-illumination, automatic keying, unconstrained presentation of moderation information, camera-tracking, and scene acquisition. In this paper we show how a new adaptive imperceptible pattern projection that considers parameters of human visual perception, linked with real-time difference keying enables an in-shot optical tracking using a novel dynamic multi-resolution marker technique KW - Association for Computing Machinery / Special Interest Group on Graphics KW - CGI KW - Maschinelles Sehen KW - Virtuelle Studios KW - Erweiterte Realität KW - Kamera Tracking KW - Projektion KW - Virtual Studios KW - Augmented Reality KW - Camera Tracking KW - Projection Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-8005 ER -