TY - JOUR A1 - Guo, Hongwei A1 - Alajlan, Naif A1 - Zhuang, Xiaoying A1 - Rabczuk, Timon T1 - Physics-informed deep learning for three-dimensional transient heat transfer analysis of functionally graded materials JF - Computational Mechanics N2 - We present a physics-informed deep learning model for the transient heat transfer analysis of three-dimensional functionally graded materials (FGMs) employing a Runge–Kutta discrete time scheme. Firstly, the governing equation, associated boundary conditions and the initial condition for transient heat transfer analysis of FGMs with exponential material variations are presented. Then, the deep collocation method with the Runge–Kutta integration scheme for transient analysis is introduced. The prior physics that helps to generalize the physics-informed deep learning model is introduced by constraining the temperature variable with discrete time schemes and initial/boundary conditions. Further the fitted activation functions suitable for dynamic analysis are presented. Finally, we validate our approach through several numerical examples on FGMs with irregular shapes and a variety of boundary conditions. From numerical experiments, the predicted results with PIDL demonstrate well agreement with analytical solutions and other numerical methods in predicting of both temperature and flux distributions and can be adaptive to transient analysis of FGMs with different shapes, which can be the promising surrogate model in transient dynamic analysis. KW - Wärmeübergang KW - Deep Learning KW - Modellierung KW - physics-informed activation function KW - heat transfer KW - functionally graded materials Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230517-63666 UR - https://link.springer.com/article/10.1007/s00466-023-02287-x VL - 2023 SP - 1 EP - 12 PB - Springer CY - Berlin ER - TY - JOUR A1 - Guo, Hongwei A1 - Zhuang, Xiaoying A1 - Chen, Pengwan A1 - Alajlan, Naif A1 - Rabczuk, Timon T1 - Analysis of three-dimensional potential problems in non-homogeneous media with physics-informed deep collocation method using material transfer learning and sensitivity analysis JF - Engineering with Computers N2 - In this work, we present a deep collocation method (DCM) for three-dimensional potential problems in non-homogeneous media. This approach utilizes a physics-informed neural network with material transfer learning reducing the solution of the non-homogeneous partial differential equations to an optimization problem. We tested different configurations of the physics-informed neural network including smooth activation functions, sampling methods for collocation points generation and combined optimizers. A material transfer learning technique is utilized for non-homogeneous media with different material gradations and parameters, which enhance the generality and robustness of the proposed method. In order to identify the most influential parameters of the network configuration, we carried out a global sensitivity analysis. Finally, we provide a convergence proof of our DCM. The approach is validated through several benchmark problems, also testing different material variations. KW - Deep learning KW - Kollokationsmethode KW - Collocation method KW - Potential problem KW - Activation function KW - Transfer learning Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220811-46764 UR - https://link.springer.com/article/10.1007/s00366-022-01633-6 VL - 2022 SP - 1 EP - 22 ER - TY - JOUR A1 - Rabczuk, Timon A1 - Guo, Hongwei A1 - Zhuang, Xiaoying A1 - Chen, Pengwan A1 - Alajlan, Naif T1 - Stochastic deep collocation method based on neural architecture search and transfer learning for heterogeneous porous media JF - Engineering with Computers N2 - We present a stochastic deep collocation method (DCM) based on neural architecture search (NAS) and transfer learning for heterogeneous porous media. We first carry out a sensitivity analysis to determine the key hyper-parameters of the network to reduce the search space and subsequently employ hyper-parameter optimization to finally obtain the parameter values. The presented NAS based DCM also saves the weights and biases of the most favorable architectures, which is then used in the fine-tuning process. We also employ transfer learning techniques to drastically reduce the computational cost. The presented DCM is then applied to the stochastic analysis of heterogeneous porous material. Therefore, a three dimensional stochastic flow model is built providing a benchmark to the simulation of groundwater flow in highly heterogeneous aquifers. The performance of the presented NAS based DCM is verified in different dimensions using the method of manufactured solutions. We show that it significantly outperforms finite difference methods in both accuracy and computational cost. KW - Maschinelles Lernen KW - Neuronales Lernen KW - Fehlerabschätzung KW - deep learning KW - neural architecture search KW - randomized spectral representation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220209-45835 UR - https://link.springer.com/article/10.1007/s00366-021-01586-2 VL - 2022 SP - 1 EP - 26 PB - Springer CY - London ER -