TY - THES A1 - Markert, Michael T1 - Räumliche Navigation durch richtungsgebundene Stereofonie N2 - Die Verbreitung mobiler Smartphones und besonders deren allgegenwärtige Lokalisierungstechnologien verändern das Navigationsverhalten im Raum nachhaltig. Parallel zur schnell voranschreitenden Entwicklung alltäglicher Geräte, die mitgeführt werden, setzt der Übergang der bereits länger dauernden Entwicklung von Virtual-Reality-Technik in eine erweiterte und augmentierte Mixed Reality ein. In diesem Spannungsfeld untersucht die vorliegende Arbeit, inwieweit richtungsgebundene und binaural wiedergegebene Stereofonie die menschliche Bewegung im Raum beeinflussen kann und versucht zu erörtern, welche Potenziale in der Wiederentdeckung einer relativ lange bekannten Technik liegen. Der Autor hat im Rahmen dieser Arbeit eine binaurale mobile Applikation für richtungsgebundene Stereofonie entwickelt, mit der virtuelle bewegte oder statische Audio-Hotspots im Raum platziert werden können. So kann links, rechts oder 30 Meter vor einer Person ein virtueller oder tatsächlicher Klang im Raum verortet sein. Durch die in Echtzeit berechnete binaurale Wiedergabe der Klangquellen mit einem Stereo-Kopfhörer können diese räumlich verorteten Klänge mit zwei Ohren dreidimensional wahrgenommen werden, ähnlich dem räumlichen Sehen mit zwei Augen. Durch den Einsatz mehrerer lokalisierter Klangquellen als Soundscape entsteht eine augmentierte auditive Realität, die die physische Realität erweitert. Die Position und Navigation des Nutzers wird durch binaurale Lautstärkenmodulation (die Lautstärke nimmt bei abnehmender Distanz zur Quelle zu) und Stereopanning mit Laufzeitmodulation (die Richtung wird über ein Stereosignal auf beiden Ohren räumlich links-rechts-vorne verortet) interaktiv und kybernetisch beeinflusst. Die Nutzer navigieren — durch ihr Interesse an den hörbaren virtuellen Klangquellen geleitet — durch einen dynamisch erzeugten, dreidimensionalen akustischen Raum, der gleichzeitig ein virtueller und kybernetischer Raum ist, da die Repräsentation der Klänge an die Bewegung und Ausrichtung der Nutzer im Raum angepasst wird. Diese Arbeit untersucht, ob die Bewegung von Menschen durch (virtuelle) Klänge beeinflusst werden kann und wie groß oder messbar dieser Einfluss ist. Dabei können nicht alle künstlerischen, architektonischen und philosophischen Fragen im Rahmen der vorliegenden Schrift erörtert werden, obwohl sie dennoch als raumtheoretische Fragestellung von Interesse sind. Hauptgegenstand der vorliegenden Arbeit liegt in der Erforschung, ob richtungsgebundene Stereofonie einen relevanten Beitrag zur menschlichen Navigation, hauptsächlich zu Fuß, in urbanen Gebieten — vorwiegend im Außenraum — leisten kann. Der erste Teil gliedert sich in »Raum und Klang«, es werden raumtheoretische Überlegungen zur menschlichen Bewegung im Raum, Raumvorstellungen, räumliche Klänge und Klangwahrnehmung sowie die Entwicklung stereofoner Apparaturen und Aspekte der Augmented Audio Reality besprochen. Im zweiten Teil werden drei Demonstratoren als Anwendungsszenarien und drei Evaluierungen im Außenraum vorgestellt. Die Tests untersuchen, ob sich das Verfahren zur Navigation für Fußgänger eignet und inwieweit eine Einflussnahme auf das Bewegungsverhalten von Nutzern getroffen werden kann. Die Auswertungen der Tests zeigen, dass sich stereofone Klänge grundsätzlich als Navigationssystem eignen, da eine große Mehrzahl der Teilnehmer die akustisch markierten Ziele leicht gefunden hat. Ebenso zeigt sich ein klarer Einfluss auf die Bewegungsmuster, allerdings ist dieser abhängig von individuellen Interessen und Vorlieben. Abschließend werden die Ergebnisse der Untersuchungen im Kontext der vorgestellten Theorien diskutiert und die Potenziale stereofoner Anwendungen in einem Ausblick behandelt. Bei der Gestaltung, Erzeugung und Anwendung mobiler Systeme sind unterschiedliche mentale und räumliche Modelle und Vorstellungen der Entwickler und Anwender zu beachten. Da eine umfassende transdisziplinäre Betrachtung klare Begrifflichkeiten erfordert, werden Argumente für ein raumtheoretisches Vokabular diskutiert. Diese sind für einen gestalterischen Einsatz von richtungsgebundener Stereofonie — besonders im Kontext mobiler Navigation durch akustisch augmentierte Räume — äußerst relevant. KW - Raum KW - Stereophonie KW - Raumklang KW - Erweiterte Realität KW - Kybernetik KW - Stereofonie KW - Augmented Audio Reality KW - Mensch-Maschine-Interaktion KW - Navigation KW - Localised Sound KW - Mensch-Maschine-Kommunikation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20201214-43038 ER - TY - CHAP A1 - Bimber, Oliver T1 - Projector-Based Augmentation T2 - Emerging Technologies of Augmented Reality: Interfaces & Design N2 - Projector-based augmentation approaches hold the potential of combining the advantages of well-establishes spatial virtual reality and spatial augmented reality. Immersive, semi-immersive and augmented visualizations can be realized in everyday environments – without the need for special projection screens and dedicated display configurations. Limitations of mobile devices, such as low resolution and small field of view, focus constrains, and ergonomic issues can be overcome in many cases by the utilization of projection technology. Thus, applications that do not require mobility can benefit from efficient spatial augmentations. Examples range from edutainment in museums (such as storytelling projections onto natural stone walls in historical buildings) to architectural visualizations (such as augmentations of complex illumination simulations or modified surface materials in real building structures). This chapter describes projector-camera methods and multi-projector techniques that aim at correcting geometric aberrations, compensating local and global radiometric effects, and improving focus properties of images projected onto everyday surfaces. KW - Erweiterte Realität KW - Virtuelle Realität KW - Projektionsverfahren KW - CGI KW - Bildbasiertes Rendering KW - Rendering KW - Projektor-Kamera Systeme KW - Multi-Projektor Systeme KW - projector-camera systems KW - multi-projector systems KW - spatial augmented reality Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-7353 ER - TY - JOUR A1 - Bimber, Oliver A1 - Grundhöfer, Anselm A1 - Zollmann, Stefanie A1 - Kolster, Daniel T1 - Digital Illumination for Augmented Studios N2 - Virtual studio technology plays an important role for modern television productions. Blue-screen matting is a common technique for integrating real actors or moderators into computer generated sceneries. Augmented reality offers the possibility to mix real and virtual in a more general context. This article proposes a new technological approach for combining real studio content with computergenerated information. Digital light projection allows a controlled spatial, temporal, chrominance and luminance modulation of illumination – opening new possibilities for TV studios. KW - Studiotechnik KW - Erweiterte Realität KW - Fernsehproduktion KW - Projektion KW - Augmented studio KW - Augmented reality KW - digital light projection Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-8576 ER - TY - CHAP A1 - Bimber, Oliver T1 - HOLOGRAPHICS: Combining Holograms with Interactive Computer Graphics T2 - New Directions in Holography and Speckles N2 - Among all imaging techniques that have been invented throughout the last decades, computer graphics is one of the most successful tools today. Many areas in science, entertainment, education, and engineering would be unimaginable without the aid of 2D or 3D computer graphics. The reason for this success story might be its interactivity, which is an important property that is still not provided efficiently by competing technologies – such as holography. While optical holography and digital holography are limited to presenting a non-interactive content, electroholography or computer generated holograms (CGH) facilitate the computer-based generation and display of holograms at interactive rates [2,3,29,30]. Holographic fringes can be computed by either rendering multiple perspective images, then combining them into a stereogram [4], or simulating the optical interference and calculating the interference pattern [5]. Once computed, such a system dynamically visualizes the fringes with a holographic display. Since creating an electrohologram requires processing, transmitting, and storing a massive amount of data, today’s computer technology still sets the limits for electroholography. To overcome some of these performance issues, advanced reduction and compression methods have been developed that create truly interactive electroholograms. Unfortunately, most of these holograms are relatively small, low resolution, and cover only a small color spectrum. However, recent advances in consumer graphics hardware may reveal potential acceleration possibilities that can overcome these limitations [6]. In parallel to the development of computer graphics and despite their non-interactivity, optical and digital holography have created new fields, including interferometry, copy protection, data storage, holographic optical elements, and display holograms. Especially display holography has conquered several application domains. Museum exhibits often use optical holograms because they can present 3D objects with almost no loss in visual quality. In contrast to most stereoscopic or autostereoscopic graphics displays, holographic images can provide all depth cues—perspective, binocular disparity, motion parallax, convergence, and accommodation—and theoretically can be viewed simultaneously from an unlimited number of positions. Displaying artifacts virtually removes the need to build physical replicas of the original objects. In addition, optical holograms can be used to make engineering, medical, dental, archaeological, and other recordings—for teaching, training, experimentation and documentation. Archaeologists, for example, use optical holograms to archive and investigate ancient artifacts [7,8]. Scientists can use hologram copies to perform their research without having access to the original artifacts or settling for inaccurate replicas. Optical holograms can store a massive amount of information on a thin holographic emulsion. This technology can record and reconstruct a 3D scene with almost no loss in quality. Natural color holographic silver halide emulsion with grain sizes of 8nm is today’s state-of-the-art [14]. Today, computer graphics and raster displays offer a megapixel resolution and the interactive rendering of megabytes of data. Optical holograms, however, provide a terapixel resolution and are able to present an information content in the range of terabytes in real-time. Both are dimensions that will not be reached by computer graphics and conventional displays within the next years – even if Moore’s law proves to hold in future. Obviously, one has to make a decision between interactivity and quality when choosing a display technology for a particular application. While some applications require high visual realism and real-time presentation (that cannot be provided by computer graphics), others depend on user interaction (which is not possible with optical and digital holograms). Consequently, holography and computer graphics are being used as tools to solve individual research, engineering, and presentation problems within several domains. Up until today, however, these tools have been applied separately. The intention of the project which is summarized in this chapter is to combine both technologies to create a powerful tool for science, industry and education. This has been referred to as HoloGraphics. Several possibilities have been investigated that allow merging computer generated graphics and holograms [1]. The goal is to combine the advantages of conventional holograms (i.e. extremely high visual quality and realism, support for all depth queues and for multiple observers at no computational cost, space efficiency, etc.) with the advantages of today’s computer graphics capabilities (i.e. interactivity, real-time rendering, simulation and animation, stereoscopic and autostereoscopic presentation, etc.). The results of these investigations are presented in this chapter. KW - Erweiterte Realität KW - CGI KW - Hologramm KW - Projektionsapparat KW - Rendering KW - Scanning KW - Reconstruction KW - computer grafik KW - computer graphics Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-7365 ER -