TY - JOUR A1 - Chau-Dinh, T. A1 - Zi, Goangseup A1 - Lee, P.S. A1 - Song, Jeong-Hoon A1 - Rabczuk, Timon T1 - Phantom-node method for shell models with arbitrary cracks JF - Computers & Structures N2 - A phantom-node method is developed for three-node shell elements to describe cracks. This method can treat arbitrary cracks independently of the mesh. The crack may cut elements completely or partially. Elements are overlapped on the position of the crack, and they are partially integrated to implement the discontinuous displacement across the crack. To consider the element containing a crack tip, a new kinematical relation between the overlapped elements is developed. There is no enrichment function for the discontinuous displacement field. Several numerical examples are presented to illustrate the proposed method. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.compstruc.2011.10.021 ER - TY - JOUR A1 - Talebi, Hossein A1 - Zi, Goangseup A1 - Silani, Mohammad A1 - Samaniego, Esteban A1 - Rabczuk, Timon T1 - A simple circular cell method for multilevel finite element analysis JF - Journal of Applied Mathematics N2 - A simple multiscale analysis framework for heterogeneous solids based on a computational homogenization technique is presented. The macroscopic strain is linked kinematically to the boundary displacement of a circular or spherical representative volume which contains the microscopic information of the material. The macroscopic stress is obtained from the energy principle between the macroscopic scale and the microscopic scale. This new method is applied to several standard examples to show its accuracy and consistency of the method proposed. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1155/2012/526846 ER - TY - JOUR A1 - Nguyen-Vinh, H. A1 - Bakar, I. A1 - Msekh, Mohammed Abdulrazzak A1 - Song, Jeong-Hoon A1 - Muthu, Jacob A1 - Zi, Goangseup A1 - Le, P. A1 - Bordas, Stéphane Pierre Alain A1 - Simpson, R. A1 - Natarajan, S. A1 - Lahmer, Tom A1 - Rabczuk, Timon T1 - Extended Finite Element Method for Dynamic Fracture of Piezo-Electric Materials JF - Engineering Fracture Mechanics N2 - We present an extended finite element formulation for dynamic fracture of piezo-electric materials. The method is developed in the context of linear elastic fracture mechanics. It is applied to mode I and mixed mode-fracture for quasi-steady cracks. An implicit time integration scheme is exploited. The results are compared to results obtained with the boundary element method and show excellent agreement. KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.engfracmech.2012.04.025 SP - 19 EP - 31 ER -