TY - CHAP A1 - Theiler, Michael A1 - Tauscher, Eike A1 - Tulke, Jan A1 - Riedel, Thomas ED - von Both, Petra ED - Koch, Volker T1 - Visualisierung von IFC-Objekten mittels Java3D T2 - Forum Bauinformatik 2009 N2 - Die Planung komplexer Bauwerke erfolgt zunehmend mit rechnergestützten Planungswerkzeugen, die den Export von Bauwerksinformationen im STEP-Format auf Grundlage der Industry Foundation Classes (IFC) ermöglichen. Durch die Verfügbarkeit dieser Schnittstelle ist es möglich, Bauwerksinformationen für eine weiterführende applikationsübergreifende Verarbeitung bereitzustellen. Ein großer Teil der bereitgestellten Informationen bezieht sich auf die geometrische Beschreibung der einzelnen Bauteile. Um den am Bauprozess Beteiligten eine optimale Auswertung und Analyse der Bauwerksinformationen zu ermöglichen, ist deren Visualisierung unumgänglich. Das IFC-Modell stellt diese Daten mit Hilfe verschiedener Geometriemodelle bereit. Der vorliegende Beitrag beschreibt die Visualisierung von IFC-Objekten mittels Java3D. Er beschränkt sich dabei auf die Darstellung von Objekten, deren Geometrie mittels Boundary Representation (Brep) oder Surface-Model-Repräsentation beschrieben wird. KW - IFC KW - Brep KW - STEP KW - Visualisierung KW - Schnittstelle Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20130107-18149 SN - 978-3-86644-396-9 SP - 149 EP - 159 PB - Universitätsverlag CY - Karlsruhe ER - TY - CHAP A1 - Theiler, Michael A1 - Tauscher, Eike A1 - Tulke, Jan A1 - Riedel, Thomas ED - Krämer, Torsten T1 - Boolesche Operationen für die Visualisierung von IFC-Gebäudemodellen T2 - Forum Bauinformatik 2010 N2 - Die Planung von komplexen Bauwerken erfolgt zunehmend mit Planungswerkzeugen, die den Export von Bauwerksinformationen im STEP-Format auf Grundlage der IFC (Industry Foundation Classes) erlauben. Durch die Verfügbarkeit dieser Schnittstelle ist es möglich, Bauwerksinformationen für die weiterführende Verarbeitung zu verwenden. Zur Visualisierung der geometrischen Daten stehen innerhalb der IFC verschiedene geometrische Modelle für die Darstellung von Bauteilen zur Verfügung. Unter anderem werden für das „Ausschneiden“ von Öffnungen aus Bauteilen (z.B. für Fenster und Türen) geometrische boolesche Operationen benötigt. Gegenstand des Beitrags ist die Vorstellung eines Algorithmus zur Berechnung von booleschen Operationen auf Basis eines triangulierten B-Rep (Boundary Representation) Modells nach HUBBARD (1990). Da innerhalb von IFC-Gebäudemodellen Bauteile oft das Resultat mehrerer boolescher Operationen sind (z.B. um mehrere Fensteröffnungen von einer gegebenen Wand abzuziehen), wurde der Algorithmus von Hubbard angepasst, sodass mehrere boolesche Operationen gleichzeitig berechnet werden können. Durch diese Optimierung wird eine deutliche Reduzierung der benötigten Berechnungen und somit der Rechenzeit erreicht. KW - IFC KW - Boolesche Operationen KW - Visualisierung KW - Hubbard KW - Laidlaw Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20130107-18151 SN - 978-3-8322-9456-4 SP - 251 EP - 258 PB - Shaker Verlag CY - Aachen ER - TY - CHAP A1 - Theiler, Michael A1 - Könke, Carsten ED - Maia, Nuno T1 - Damping in Bolted Joints T2 - Proceedings of International Conference on Structural Engineering Dynamics (ICEDyn) 2013 N2 - With the help of modern CAE-based simulation processes, it is possible to predict the dynamic behavior of fatigue strength problems in order to improve products of many industries, e.g. the building, the machine construction or the automotive industry. Amongst others, it can be used to improve the acoustic design of automobiles in an early development stage. Nowadays, the acoustics of automobiles plays a crucial role in the process of vehicle development. Because of the advanced demand of comfort and due to statutory rules the manufacturers are faced with the challenge of optimizing their car’s sound emissions. The optimization includes not only the reduction of noises. Lately with the trend to hybrid and electric cars, it has been shown that vehicles can become too quiet. Thus, the prediction of structural and acoustic properties based on FE-simulations is becoming increasingly important before any experimental prototype is examined. With the state of the art, qualitative comparisons between different implementations are possible. However, an accurate and reliable quantitative prediction is still a challenge. One aspect in the context of increasing the prediction quality of acoustic (or general oscillating) problems - especially in power-trains of automobiles - is the more accurate implementation of damping in joint structures. While material damping occurs globally and homogenous in a structural system, the damping due to joints is a very local problem, since energy is especially dissipated in the vicinity of joints. This paper focusses on experimental and numerical studies performed on a single (extracted) screw connection. Starting with experimental studies that are used to identify the underlying physical model of the energy loss, the locally influencing parameters (e.g. the damping factor) should be identified. In contrast to similar research projects, the approach tends to a more local consideration within the joint interface. Tangential stiffness and energy loss within the interface are spatially distributed and interactions between the influencing parameters are regarded. As a result, the damping matrix is no longer proportional to mass or stiffness matrix, since it is composed of the global material damping and the local joint damping. With this new approach, the prediction quality can be increased, since the local distribution of the physical parameters within the joint interface corresponds much closer to the reality. KW - Damping Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20130701-19709 SN - 978-989-96276-4-2 ER -