TY - JOUR A1 - Kaapke, Kai A1 - Milbradt, Peter T1 - Voronoi-based finite volume method for transport problems N2 - Transport problems, as, for instance, the transport of sediment in hydraulic engineering and the transport of harmful substances through porous media, play an important role in many fields of civil engineering. Other examples include the dissipation of heat or sound as well as the simulation of traffic with macroscopic models. The contribution explains the analysis of the applicability of Voronoi-based finite volume methods for the approximation of solutions of transport problems. A special concern is the discretisation of the transport equation. Current limitations of the method as well as ideas for stabilisation are explained with examples. KW - Finite-Elemente-Methode KW - Physikalisches Verfahren KW - Transport Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2558 ER - TY - CHAP A1 - Milbradt, Peter T1 - Stabilisierte Finite Elemente in der Hydrodynamik N2 - Hydro- und morphodynamischen Prozesse in Binnengewässern und im Küstennahbereich erzeugen hochkomplexe Phänomene. Zur Beurteilung der Entwicklung von Küstenzohnen, von Flussbetten sowie von Eingriffen des Menschen in Form von Schutzbauwerken sind geeignete numerische Modellwerkzeuge notwendig. Es wird ein holistischer Modellansatz zur Approximation gekoppelter Seegangs-, Strömungs- und Morphodynamischer Prozesse auf der Basis stabilisierter Finiter Elemente vorgestellt. Der Großteil der Modellgleichungen der Hydro- und Morphodynamik sind Transportgleichungen. Dem Transportcharakter dieser Gleichungen entsprechend wird ein stabilisiertes Finites Element Verfahren auf Dreiecken vorgestellt. Die vorgestellte Approximation entspricht einem streamline upwinding Petrov-Galerkin-Verfahrens für vektorwertige mehrdimensionale Probleme, bei dem der Fehler eines Standard-Galerkin-Verfahrens mit Hilfe eines Upwinding-Koeffizienten minimiert wird. Die Wahl des Upwinding-Koeffizienten ist übertragbar auf andere Problemklassen und basiert ausschließlich auf dem Charakter der zugrundeliegene Das Modell wurde für Seegangs- und Strömungs-Untersuchungen im Jade-Weser-Ästuar an der deutschen Nordseeküste eingesetzt. KW - Hydrodynamik KW - Finite-Elemente-Methode Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-3327 ER - TY - CHAP A1 - Milbradt, Peter A1 - Rose, Martin T1 - Numerische Approximation makroskopischer Verkehrsmodelle mit der Methode der Finiten Elemente N2 - Makroskopische Verkehrsmodelle sind ein wesentliches Hilfsmittel bei der Beurteilung und Steuerung von Verkehrsflüssen auf Hauptverkehrsadern. Für die notwendige Beeinflussung des Verkehrsablaufs werden Online-Messungen und prognostische numerische Simulationen benötigt. Für die Simulationen bieten sich makroskopische Verkehrsmodelle an, die den Verkehr als kontinuierliche Fahrzeugströmeabbilden. Aufgrund der Analogie zu den Modellen der Strömungsmechanik lassen sich die numerischen Verfahren aus diesem Bereich auch zur Lösung makroskopischer Verkehrsmodelle verwenden. Es wird eine Finite-Elemente-Approximation für die numerische Umsetzung makroskopischer Verkehrsmodelle vorgestellt. Exemplarisch wird sie am Verkehrsmodell von Kerner und Konhäuser erläutert. Dieses und andere makroskopische Verkehrsmodelle wurden bisher mit der Methode der Finiten Differenzen gelöst. Die vorgestellte Approximation entspricht einem Petrov-Galerkin-Verfahren, bei dem der Fehler eines Standard-Galerkin-Verfahrens mit Hilfe eines Upwinding-Koeffizienten minimiert wird. Die Wahl des Upwinding-Koeffizienten ist übertragbar und basiert ausschließlich auf dem Charakter der zugrundeliegenden Gleichungen. Die Ergebnisse zeigen typische Phänomene eines Verkehrsablaufs wie die Entstehung von Stop-and-Go-Wellen oder Staus. Die Finite-Elemente-Methode erweist sich für unter-schiedlichste Verkehrsmodelle als ausgesprochen stabil. KW - Verkehrsleitsystem KW - Modellierung KW - Finite-Elemente-Methode Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-6046 ER - TY - CHAP A1 - Milbradt, Peter A1 - Schwöppe, Axel T1 - Finite Element Approximation auf der Basis geometrischer Zellen N2 - Die Methode der Finiten Elemente ist ein numerisches Verfahren zur Interpolation vorgegebener Werte und zur numerischen Approximation von Lösungen stationärer oder instationärer partieller Differentialgleichungen bzw. Systemen partieller Differentialgleichungen. Grundlage dieser Verfahren ist die Formulierung geeigneter Finiter Elemente und Finiter Element Zerlegungen. Finite Elemente besitzen in der Regel eine geometrische Basis bestehend aus Strecken im eindimensionalen, Drei- oder Vierecken im zweidimensionalen und Tetra- oder Hexaedern im dreidimensionalen euklidischen Raum, eine Menge von Freiheitsgraden und eine Basis von Funktionen. Die geometrische Basis eines Finiten Elements wird verallgemeinert als geometrische Zelle formuliert. Diese geschlossene geometrische Formulierung führt zu einer geometrieunabhängigen Definition der Basisfunktionen eines Finiten Elements in den Zellkoordinaten der geometrischen Zelle. Finite Elemente auf der Basis geometrischer Zellen werden als Bestandteile Finiter Element Zerlegungen in Finiten Element Interpolationen und Finiten Element Approximationen verwendet. Die Finiten Element Approximationen werden am Beispiel der 2-dimensionalen Diffusionsgleichung über das Standard-Galerkin-Verfahren ermittelt. KW - Finite-Elemente-Methode KW - Approximation Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-3333 ER - TY - JOUR A1 - Milbradt, Peter A1 - Schierbaum, Jochen A1 - Schwöppe, Axel T1 - Finite Cell-Elements of Higher Order N2 - The method of the finite elements is an adaptable numerical procedure for interpolation as well as for the numerical approximation of solutions of partial differential equations. The basis of these procedure is the formulation of suitable finite elements and element decompositions of the solution space. Classical finite elements are based on triangles or quadrangles in the two-dimensional space and tetrahedron or hexahedron in the threedimensional space. The use of arbitrary-dimensional convex and non-convex polyhedrons as the geometrical basis of finite elements increases the flexibility of generating finite element decompositions substantially and is sometimes the only way to get a clear decomposition... KW - Finite-Elemente-Methode KW - Physikalisches Verfahren Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2524 ER - TY - JOUR A1 - Pick, Tobias A1 - Heimsund, Bjoern-Ove A1 - Milbradt, Peter T1 - Development and Analysis of Sparse Matrix Concepts for Finite Element Approximation on general Cells N2 - In engineering and computing, the finite element approximation is one of the most well-known computational solution techniques. It is a great tool to find solutions for mechanic, fluid mechanic and ecological problems. Whoever works with the finite element method will need to solve a large system of linear equations. There are different ways to find a solution. One way is to use a matrix decomposition technique such as LU or QR. The other possibility is to use an iterative solution algorithm like Conjugate Gradients, Gauß-Seidel, Multigrid Methods, etc. This paper will focus on iterative solvers and the needed storage techniques... KW - Finite-Elemente-Methode KW - Physikalisches Verfahren KW - Bandmatrix Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2500 ER -