TY - JOUR A1 - Lahmer, Tom A1 - Ilg, J. A1 - Lerch, Reinhard T1 - Variance-based sensitivity analyses of piezoelectric models JF - Computer Modeling in Engineering & Sciences N2 - Variance-based sensitivity analyses of piezoelectric models KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2015 SP - 105 EP - 126 ER - TY - JOUR A1 - Ilyani Akmar, A.B. A1 - Lahmer, Tom A1 - Bordas, Stéphane Pierre Alain A1 - Beex, L.A.A. A1 - Rabczuk, Timon T1 - Uncertainty quantification of dry woven fabrics: A sensitivity analysis on material properties JF - Composite Structures N2 - Uncertainty quantification of dry woven fabrics: A sensitivity analysis on material properties KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.compstruct.2014.04.014 SP - 1 EP - 17 ER - TY - JOUR A1 - Vu-Bac, N. A1 - Rafiee, Roham A1 - Zhuang, Xiaoying A1 - Lahmer, Tom A1 - Rabczuk, Timon T1 - Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters JF - Composites Part B: Engineering N2 - Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2015 SP - 446 EP - 464 ER - TY - JOUR A1 - Göbel, Luise A1 - Lahmer, Tom A1 - Osburg, Andrea T1 - Uncertainty analysis in multiscale modeling of concrete based on continuum micromechanics JF - European Journal of Mechanics-A/Solids N2 - Uncertainty analysis in multiscale modeling of concrete based on continuum micromechanics KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2017 ER - TY - JOUR A1 - Nanthakumar, S.S. A1 - Lahmer, Tom A1 - Zhuang, Xiaoying A1 - Park, Harold S. A1 - Rabczuk, Timon T1 - Topology optimization of piezoelectric nanostructures JF - Journal of the Mechanics and Physics of Solids N2 - Topology optimization of piezoelectric nanostructures KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2016 SP - 316 EP - 335 ER - TY - JOUR A1 - Alemu, Yohannes L. A1 - Habte, Bedilu A1 - Lahmer, Tom A1 - Urgessa, Girum T1 - Topologically preoptimized ground structure (TPOGS) for the optimization of 3D RC buildings JF - Asian Journal of Civil Engineering N2 - As an optimization that starts from a randomly selected structure generally does not guarantee reasonable optimality, the use of a systemic approach, named the ground structure, is widely accepted in steel-made truss and frame structural design. However, in the case of reinforced concrete (RC) structural optimization, because of the orthogonal orientation of structural members, randomly chosen or architect-sketched framing is used. Such a one-time fixed layout trend, in addition to its lack of a systemic approach, does not necessarily guarantee optimality. In this study, an approach for generating a candidate ground structure to be used for cost or weight minimization of 3D RC building structures with included slabs is developed. A multiobjective function at the floor optimization stage and a single objective function at the frame optimization stage are considered. A particle swarm optimization (PSO) method is employed for selecting the optimal ground structure. This method enables generating a simple, yet potential, real-world representation of topologically preoptimized ground structure while both structural and main architectural requirements are considered. This is supported by a case study for different floor domain sizes. KW - Bodenmechanik KW - Strukturanalyse KW - Optimierung KW - Stahlbetonkonstruktion KW - Dreidimensionales Modell KW - ground structure KW - TPOGS KW - topology optimization KW - 3D reinforced concrete buildings Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230517-63677 UR - https://link.springer.com/article/10.1007/s42107-023-00640-2 VL - 2023 SP - 1 EP - 11 PB - Springer International Publishing CY - Cham ER - TY - JOUR A1 - Lahmer, Tom A1 - Nguyen-Tuan, Long A1 - Könke, Carsten A1 - Bettzieche, Volker T1 - Thermo-hydro-mechanische 3-D-Simulation von Staumauern‐Modellierung und Validierung JF - WASSERWIRTSCHAFT N2 - Thermo-hydro-mechanische 3-D-Simulation von Staumauern‐Modellierung und Validierung KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2016 SP - 27 EP - 30 ER - TY - JOUR A1 - Stein, Peter A1 - Lahmer, Tom A1 - Bock, Sebastian T1 - Synthese und Analyse von gekoppelten Modellen im konstruktiven Ingenieurbau BT - Sonderdruck‐DFG Graduiertenkolleg JF - Bautechnik N2 - Synthese und Analyse von gekoppelten Modellen im konstruktiven Ingenieurbau KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2011 SP - 8 EP - 11 ER - TY - JOUR A1 - Vu-Bac, N. A1 - Lahmer, Tom A1 - Zhang, Yancheng A1 - Zhuang, Xiaoying A1 - Rabczuk, Timon T1 - Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs) JF - Composites Part B Engineering N2 - Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs) KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2014 SP - 80 EP - 95 ER - TY - JOUR A1 - Vu-Bac, N. A1 - Lahmer, Tom A1 - Keitel, Holger A1 - Zhao, Jun-Hua A1 - Zhuang, Xiaoying A1 - Rabczuk, Timon T1 - Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations JF - Mechanics of Materials N2 - Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2014 SP - 70 EP - 84 ER - TY - JOUR A1 - Hamdia, Khader A1 - Lahmer, Tom A1 - Nguyen-Thoi, T. A1 - Rabczuk, Timon T1 - Predicting The Fracture Toughness of PNCs: A Stochastic Approach Based on ANN and ANFIS JF - Computational Materials Science N2 - Predicting The Fracture Toughness of PNCs: A Stochastic Approach Based on ANN and ANFIS KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2015 SP - 304 EP - 313 ER - TY - JOUR A1 - Kaltenbacher, Barbara A1 - Lahmer, Tom A1 - Mohr, Marcus A1 - Kaltenbacher, Manfred T1 - PDE based determination of piezoelectric material tensors JF - European Journal of Applied Mathematics N2 - PDE based determination of piezoelectric material tensors. KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2006 U6 - http://dx.doi.org/10.25643/bauhaus-universitaet.3595 SP - 383 EP - 416 ER - TY - JOUR A1 - Lahmer, Tom A1 - Könke, Carsten A1 - Bettzieche, Volker T1 - Optimale Positionierung von Messeinrichtungen an Staumauern zur Bauwerksüberwachung JF - WASSERWIRTSCHAFT N2 - Optimale Positionierung von Messeinrichtungen an Staumauern zur Bauwerksüberwachung KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2010 SP - 16 EP - 16 ER - TY - JOUR A1 - Lahmer, Tom A1 - Könke, Carsten A1 - Bettzieche, Volker T1 - Optimal positioning of sensors for the monitoring of water dams JF - WASSERWIRTSCHAFT N2 - Optimal positioning of sensors for the monitoring of water dams KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2010 SP - 16 EP - 19 ER - TY - JOUR A1 - Lahmer, Tom A1 - Kaltenbacher, Barbara A1 - Schulz, V. T1 - Optimal measurement selection for piezoelectric material tensor identification JF - Inverse Problems in Science and Engineering N2 - Optimal measurement selection for piezoelectric material tensor identification. KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2008 U6 - http://dx.doi.org/10.25643/bauhaus-universitaet.3593 SP - 369 EP - 387 ER - TY - JOUR A1 - Lahmer, Tom T1 - Optimal experimental design for nonlinear ill-posed problems applied to gravity dams JF - Inverse Problems N2 - Optimal experimental design for nonlinear ill-posed problems applied to gravity dams KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2011 ER - TY - JOUR A1 - Nguyen-Tuan, Long A1 - Könke, Carsten A1 - Bettzieche, Volker A1 - Lahmer, Tom T1 - Numerical modeling and validation for 3D coupled-nonlinear thermo-hydro-mechanical problems in masonry dams JF - Computers & Structures N2 - Numerical modeling and validation for 3D coupled-nonlinear thermo-hydro-mechanical problems in masonry dams KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2017 SP - 143 EP - 154 ER - TY - JOUR A1 - Lahmer, Tom A1 - Bock, Sebastian A1 - Hildebrand, Jörg A1 - Gürlebeck, Klaus T1 - Non-destructive identification of residual stresses in steel under thermal loadings JF - Inverse Problems in Science and Engineering N2 - Non-destructive identification of residual stresses in steel under thermal loadings KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2016 SP - 1 EP - 17 ER - TY - JOUR A1 - Zhang, Chao A1 - Nanthakumar, S.S. A1 - Lahmer, Tom A1 - Rabczuk, Timon T1 - Multiple cracks identification for piezoelectric structures JF - International Journal of Fracture N2 - Multiple cracks identification for piezoelectric structures KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2017 SP - 1 EP - 19 ER - TY - JOUR A1 - Lahmer, Tom T1 - Modified Landweber iterations in a multilevel algorithm applied to inverse problems in piezoelectricity JF - Journal of Inverse and Ill-posed Problems N2 - Modified Landweber iterations in a multilevel algorithm applied to inverse problems in piezoelectricity KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2009 SP - 585 EP - 593 ER - TY - JOUR A1 - Harirchian, Ehsan A1 - Lahmer, Tom T1 - Improved Rapid Visual Earthquake Hazard Safety Evaluation of Existing Buildings Using a Type-2 Fuzzy Logic Model JF - Applied Sciences N2 - Rapid Visual Screening (RVS) is a procedure that estimates structural scores for buildings and prioritizes their retrofit and upgrade requirements. Despite the speed and simplicity of RVS, many of the collected parameters are non-commensurable and include subjectivity due to visual observations. This might cause uncertainties in the evaluation, which emphasizes the use of a fuzzy-based method. This study aims to propose a novel RVS methodology based on the interval type-2 fuzzy logic system (IT2FLS) to set the priority of vulnerable building to undergo detailed assessment while covering uncertainties and minimizing their effects during evaluation. The proposed method estimates the vulnerability of a building, in terms of Damage Index, considering the number of stories, age of building, plan irregularity, vertical irregularity, building quality, and peak ground velocity, as inputs with a single output variable. Applicability of the proposed method has been investigated using a post-earthquake damage database of reinforced concrete buildings from the Bingöl and Düzce earthquakes in Turkey. KW - Fuzzy-Logik KW - Erdbeben KW - Fuzzy Logic KW - Rapid Visual Screening KW - Vulnerability assessment KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200331-41161 UR - https://www.mdpi.com/2076-3417/10/7/2375 VL - 2020 IS - Volume 10, Issue 3, 2375 PB - MDPI CY - Basel ER - TY - JOUR A1 - Achenbach, Marcus A1 - Lahmer, Tom A1 - Morgenthal, Guido T1 - Identification of the thermal properties of concrete for the temperature calculation of concrete slabs and columns subjected to a standard fire—Methodology and proposal for simplified formulations JF - Fire Safety Journal 87 N2 - The fire resistance of concrete members is controlled by the temperature distribution of the considered cross section. The thermal analysis can be performed with the advanced temperature dependent physical properties provided by 5EN6 1992-1-2. But the recalculation of laboratory tests on columns from 5TU6 Braunschweig shows, that there are deviations between the calculated and measured temperatures. Therefore it can be assumed, that the mathematical formulation of these thermal properties could be improved. A sensitivity analysis is performed to identify the governing parameters of the temperature calculation and a nonlinear optimization method is used to enhance the formulation of the thermal properties. The proposed simplified properties are partly validated by the recalculation of measured temperatures of concrete columns. These first results show, that the scatter of the differences from the calculated to the measured temperatures can be reduced by the proposed simple model for the thermal analysis of concrete. KW - Sensitivitätsanalyse KW - Thermodynamische Eigenschaft KW - Fire resistance; Parameter optimization; Sensitivity analysis; Thermal properties Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170331-30929 UR - http://www.sciencedirect.com/science/article/pii/S0379711216301965 SP - 80 EP - 86 ER - TY - JOUR A1 - Knabe, Tina A1 - Datcheva, Maria A1 - Lahmer, Tom A1 - Cotecchia, F. A1 - Schanz, Tom T1 - Identification of constitutive parameters of soil using an optimization strategy and statistical analysis JF - Computers and Geotechnics N2 - Identification of constitutive parameters of soil using an optimization strategy and statistical analysis KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2013 SP - 143 EP - 157 ER - TY - JOUR A1 - Achenbach, Marcus A1 - Lahmer, Tom A1 - Morgenthal, Guido T1 - Global Sensitivity Analysis of Reinforced Concrete Walls Subjected to Standard Fire - A Comparison of Methods JF - 14th International Probabilistic Workshop N2 - Global Sensitivity Analysis of Reinforced Concrete Walls Subjected to Standard Fire—A Comparison of Methods KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2017 SP - 97 EP - 106 ER - TY - JOUR A1 - Nguyen-Tuan, Long A1 - Lahmer, Tom A1 - Datcheva, Maria A1 - Schanz, Tom T1 - Global and local sensitivity analyses for coupled thermo‐hydro‐mechanical problems JF - International Journal for Numerical and Analytical Methods in Geomechanics N2 - Global and local sensitivity analyses for coupled thermo‐hydro‐mechanical problems KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2016 ER - TY - JOUR A1 - Lahmer, Tom T1 - FEM-Based determination of real and complex elastic, dielectric, and piezoelectric moduli in piezoceramic materials JF - IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control N2 - We propose an enhanced iterative scheme for the precise reconstruction of piezoelectric material parameters from electric impedance and mechanical displacement measurements. It is based on finite-element simulations of the full three-dimensional piezoelectric equations, combined with an inexact Newton or nonlinear Landweber iterative inversion scheme. We apply our method to two piezoelectric materials and test its performance. For the first material, the manufacturer provides a full data set; for the second one, no material data set is available. For both cases, our inverse scheme, using electric impedance measurements as input data, performs well. KW - Finite-Elemente-Methode KW - Piezoelectric materials KW - Dielectric materials KW - Computational modeling KW - Frequency KW - Finite element methods KW - Manufacturing KW - Impedance measurement KW - Partial differential equations KW - Resonance KW - Resonanz Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20171030-36083 ER - TY - JOUR A1 - Lahmer, Tom A1 - Kaltenbacher, Manfred A1 - Kaltenbacher, Barbara A1 - Lerch, Reinhard A1 - Leder, Erich T1 - Fem-based determination of real and complex elastic, dielectric, and piezoelectric moduli in piezoceramic materials JF - IEEE transactions on ultrasonics, ferroelectrics, and frequency control N2 - Fem-based determination of real and complex elastic, dielectric, and piezoelectric moduli in piezoceramic materials. KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2008 U6 - http://dx.doi.org/10.25643/bauhaus-universitaet.3594 ER - TY - JOUR A1 - Nguyen-Vinh, H. A1 - Bakar, I. A1 - Msekh, Mohammed Abdulrazzak A1 - Song, Jeong-Hoon A1 - Muthu, Jacob A1 - Zi, Goangseup A1 - Le, P. A1 - Bordas, Stéphane Pierre Alain A1 - Simpson, R. A1 - Natarajan, S. A1 - Lahmer, Tom A1 - Rabczuk, Timon T1 - Extended Finite Element Method for Dynamic Fracture of Piezo-Electric Materials JF - Engineering Fracture Mechanics N2 - We present an extended finite element formulation for dynamic fracture of piezo-electric materials. The method is developed in the context of linear elastic fracture mechanics. It is applied to mode I and mixed mode-fracture for quasi-steady cracks. An implicit time integration scheme is exploited. The results are compared to results obtained with the boundary element method and show excellent agreement. KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.engfracmech.2012.04.025 SP - 19 EP - 31 ER - TY - JOUR A1 - Kumari, Vandana A1 - Harirchian, Ehsan A1 - Lahmer, Tom A1 - Rasulzade, Shahla T1 - Evaluation of Machine Learning and Web-Based Process for Damage Score Estimation of Existing Buildings JF - Buildings N2 - The seismic vulnerability assessment of existing reinforced concrete (RC) buildings is a significant source of disaster mitigation plans and rescue services. Different countries evolved various Rapid Visual Screening (RVS) techniques and methodologies to deal with the devastating consequences of earthquakes on the structural characteristics of buildings and human casualties. Artificial intelligence (AI) methods, such as machine learning (ML) algorithm-based methods, are increasingly used in various scientific and technical applications. The investigation toward using these techniques in civil engineering applications has shown encouraging results and reduced human intervention, including uncertainties and biased judgment. In this study, several known non-parametric algorithms are investigated toward RVS using a dataset employing different earthquakes. Moreover, the methodology encourages the possibility of examining the buildings’ vulnerability based on the factors related to the buildings’ importance and exposure. In addition, a web-based application built on Django is introduced. The interface is designed with the idea to ease the seismic vulnerability investigation in real-time. The concept was validated using two case studies, and the achieved results showed the proposed approach’s potential efficiency KW - Maschinelles Lernen KW - rapid assessment KW - Machine learning KW - Vulnerability assessment KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220509-46387 UR - https://www.mdpi.com/2075-5309/12/5/578 VL - 2022 IS - Volume 12, issue 5, article 578 SP - 1 EP - 23 PB - MDPI CY - Basel ER - TY - JOUR A1 - Keitel, Holger A1 - Karaki, Ghada A1 - Lahmer, Tom A1 - Nikulla, Susanne A1 - Zabel, Volkmar T1 - Evaluation of coupled partial models in structural engineering using graph theory and sensitivity analysis JF - Engineering structures N2 - Evaluation of coupled partial models in structural engineering using graph theory and sensitivity analysis KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2011 SP - 3726 EP - 3736 ER - TY - JOUR A1 - Hauck, A. A1 - Lahmer, Tom A1 - Kaltenbacher, Manfred T1 - Enhanced homogenization technique for magnetomechanical systems using the generalized finite element method JF - COMPEL: The international journal for computation and mathematics in electrical and electronic engineering N2 - Enhanced homogenization technique for magnetomechanical systems using the generalized finite element method KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2009 SP - 935 EP - 947 ER - TY - JOUR A1 - Alkam, Feras A1 - Lahmer, Tom T1 - Eigenfrequency-Based Bayesian Approach for Damage Identification in Catenary Poles JF - Infrastructures N2 - This study proposes an efficient Bayesian, frequency-based damage identification approach to identify damages in cantilever structures with an acceptable error rate, even at high noise levels. The catenary poles of electric high-speed train systems were selected as a realistic case study to cover the objectives of this study. Compared to other frequency-based damage detection approaches described in the literature, the proposed approach is efficiently able to detect damages in cantilever structures to higher levels of damage detection, namely identifying both the damage location and severity using a low-cost structural health monitoring (SHM) system with a limited number of sensors; for example, accelerometers. The integration of Bayesian inference, as a stochastic framework, in the proposed approach, makes it possible to utilize the benefit of data fusion in merging the informative data from multiple damage features, which increases the quality and accuracy of the results. The findings provide the decision-maker with the information required to manage the maintenance, repair, or replacement procedures. KW - Fahrleitung KW - Schaden KW - Fahrleitungsmast KW - Schadenserkennung KW - vibration-based damage identification KW - Bayesian inference Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210510-44256 UR - https://www.mdpi.com/2412-3811/6/4/57 VL - 2021 IS - Volume 6, issue 4, article 57 SP - 1 EP - 19 PB - MDPI CY - Basel ER - TY - JOUR A1 - Schmidt, Albrecht A1 - Lahmer, Tom T1 - Efficient domain decomposition based reliability analysis for polymorphic uncertain material parameters JF - Proceedings in Applied Mathematics & Mechanics N2 - Realistic uncertainty description incorporating aleatoric and epistemic uncertainties can be described within the framework of polymorphic uncertainty, which is computationally demanding. Utilizing a domain decomposition approach for random field based uncertainty models the proposed level-based sampling method can reduce these computational costs significantly and shows good agreement with a standard sampling technique. While 2-level configurations tend to get unstable with decreasing sampling density 3-level setups show encouraging results for the investigated reliability analysis of a structural unit square. KW - Polymorphie KW - Stoffeigenschaft KW - Stochastik KW - polymorphe Unschärfemodellierung KW - Materialverhalten KW - hybride Werkstoffe Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220112-45563 UR - https://onlinelibrary.wiley.com/doi/full/10.1002/pamm.202100014 VL - 2021 IS - Volume 21, issue 1 SP - 1 EP - 4 PB - Wiley-VHC CY - Weinheim ER - TY - JOUR A1 - Harirchian, Ehsan A1 - Lahmer, Tom A1 - Buddhiraju, Sreekanth A1 - Mohammad, Kifaytullah A1 - Mosavi, Amir T1 - Earthquake Safety Assessment of Buildings through Rapid Visual Screening JF - Buildings N2 - Earthquake is among the most devastating natural disasters causing severe economical, environmental, and social destruction. Earthquake safety assessment and building hazard monitoring can highly contribute to urban sustainability through identification and insight into optimum materials and structures. While the vulnerability of structures mainly depends on the structural resistance, the safety assessment of buildings can be highly challenging. In this paper, we consider the Rapid Visual Screening (RVS) method, which is a qualitative procedure for estimating structural scores for buildings suitable for medium- to high-seismic cases. This paper presents an overview of the common RVS methods, i.e., FEMA P-154, IITK-GGSDMA, and EMPI. To examine the accuracy and validation, a practical comparison is performed between their assessment and observed damage of reinforced concrete buildings from a street survey in the Bingöl region, Turkey, after the 1 May 2003 earthquake. The results demonstrate that the application of RVS methods for preliminary damage estimation is a vital tool. Furthermore, the comparative analysis showed that FEMA P-154 creates an assessment that overestimates damage states and is not economically viable, while EMPI and IITK-GGSDMA provide more accurate and practical estimation, respectively. KW - Maschinelles Lernen KW - Machine learning KW - Erdbeben KW - buildings KW - earthquake safety assessment KW - earthquake KW - extreme events KW - seismic assessment KW - natural hazard KW - mitigation KW - rapid visual screening Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200331-41153 UR - https://www.mdpi.com/2075-5309/10/3/51 VL - 2020 IS - Volume 10, Issue 3 PB - MDPI ER - TY - JOUR A1 - Harirchian, Ehsan A1 - Lahmer, Tom A1 - Rasulzade, Shahla T1 - Earthquake Hazard Safety Assessment of Existing Buildings Using Optimized Multi-Layer Perceptron Neural Network JF - Energies N2 - The latest earthquakes have proven that several existing buildings, particularly in developing countries, are not secured from damages of earthquake. A variety of statistical and machine-learning approaches have been proposed to identify vulnerable buildings for the prioritization of retrofitting. The present work aims to investigate earthquake susceptibility through the combination of six building performance variables that can be used to obtain an optimal prediction of the damage state of reinforced concrete buildings using artificial neural network (ANN). In this regard, a multi-layer perceptron network is trained and optimized using a database of 484 damaged buildings from the Düzce earthquake in Turkey. The results demonstrate the feasibility and effectiveness of the selected ANN approach to classify concrete structural damage that can be used as a preliminary assessment technique to identify vulnerable buildings in disaster risk-management programs. KW - Erdbeben KW - Maschinelles Lernen KW - earthquake damage KW - seismic vulnerability KW - artificial neural network KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200504-41575 UR - https://www.mdpi.com/1996-1073/13/8/2060/htm VL - 2020 IS - Volume 13, Issue 8, 2060 PB - MDPI CY - Basel ER - TY - JOUR A1 - Nanthakumar, S.S. A1 - Lahmer, Tom A1 - Rabczuk, Timon T1 - Detection of multiple flaws in piezoelectric structures using XFEM and level sets JF - International Journal for Numerical Methods in Engineering N2 - Detection of multiple flaws in piezoelectric structures using XFEM and level sets KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2016 SP - 960 ER - TY - JOUR A1 - Nanthakumar, S.S. A1 - Lahmer, Tom A1 - Rabczuk, Timon T1 - Detection of multiple flaws in piezoelectric structures using XFEM and level sets JF - Computer Methods in Applied Mechanics and Engineering N2 - Detection of multiple flaws in piezoelectric structures using XFEM and level sets KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2014 SP - 98 EP - 112 ER - TY - JOUR A1 - Nanthakumar, S.S. A1 - Lahmer, Tom A1 - Zhuang, Xiaoying A1 - Zi, Goangseup A1 - Rabczuk, Timon T1 - Detection of material interfaces using a regularized level set method in piezoelectric structures JF - Inverse Problems in Science and Engineering N2 - Detection of material interfaces using a regularized level set method in piezoelectric structures KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2016 SP - 153 EP - 176 ER - TY - JOUR A1 - Nanthakumar, S.S. A1 - Lahmer, Tom A1 - Zhuang, Xiaoying A1 - Zi, Goangseup A1 - Rabczuk, Timon T1 - Detection of material interfaces using a regularized level set method in piezoelectric structures JF - Inverse Problems in Science and Engineering N2 - Detection of material interfaces using a regularized level set method in piezoelectric structures KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2015 ER - TY - JOUR A1 - Nanthakumar, S.S. A1 - Lahmer, Tom A1 - Rabczuk, Timon T1 - Detection of flaws in piezoelectric structures using extended FEM JF - International Journal for Numerical Methods in Engineering N2 - Detection of flaws in piezoelectric structures using extended FEM KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2013 SP - 373 EP - 389 ER - TY - JOUR A1 - Al-Yasiri, Zainab Riyadh Shaker A1 - Mutashar, Hayder Majid A1 - Gürlebeck, Klaus A1 - Lahmer, Tom ED - Shafiullah, GM T1 - Damage Sensitive Signals for the Assessment of the Conditions of Wind Turbine Rotor Blades Using Electromagnetic Waves JF - Infrastructures N2 - One of the most important renewable energy technologies used nowadays are wind power turbines. In this paper, we are interested in identifying the operating status of wind turbines, especially rotor blades, by means of multiphysical models. It is a state-of-the-art technology to test mechanical structures with ultrasonic-based methods. However, due to the density and the required high resolution, the testing is performed with high-frequency waves, which cannot penetrate the structure in depth. Therefore, there is a need to adopt techniques in the fields of multiphysical model-based inversion schemes or data-driven structural health monitoring. Before investing effort in the development of such approaches, further insights and approaches are necessary to make the techniques applicable to structures such as wind power plants (blades). Among the expected developments, further accelerations of the so-called “forward codes” for a more efficient implementation of the wave equation could be envisaged. Here, we employ electromagnetic waves for the early detection of cracks. Because in many practical situations, it is not possible to apply techniques from tomography (characterized by multiple sources and sensor pairs), we focus here on the question of whether the existence of cracks can be determined by using only one source for the sent waves. KW - Windkraftwerk KW - Rotorblatt KW - Elektrostatische Welle KW - MATLAB KW - wind turbine rotor blades KW - electromagnetic waves KW - crack detection KW - Empire XPU 8.01 KW - Matlab KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220831-47093 UR - https://www.mdpi.com/2412-3811/7/8/104 VL - 2022 IS - Volume 7, Issue 8 (August 2022), article 104 PB - MDPI CY - Basel ER - TY - JOUR A1 - Alalade, Muyiwa A1 - Nguyen-Tuan, Long A1 - Wuttke, Frank A1 - Lahmer, Tom T1 - Damage identification in gravity dams using dynamic coupled hydro-mechanical XFEM JF - International Journal of Mechanics and Materials in Design N2 - Damage identification in gravity dams using dynamic coupled hydro-mechanical XFEM. KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2017 U6 - http://dx.doi.org/10.25643/bauhaus-universitaet.3596 SP - 1 EP - 19 ER - TY - JOUR A1 - Lahmer, Tom T1 - Crack identification in hydro-mechanical systems with applications to gravity water dams JF - Inverse Problems in Science and Engineering N2 - Crack identification in hydro-mechanical systems with applications to gravity water dams KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2010 SP - 1083 EP - 1101 ER - TY - JOUR A1 - Marzban, Samira A1 - Lahmer, Tom T1 - Conceptual implementation of the variance-based sensitivity analysis for the calculation of the first-order effects JF - Journal of Statistical Theory and Practice N2 - Conceptual implementation of the variance-based sensitivity analysis for the calculation of the first-order effects KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2016 SP - 589 EP - 611 ER - TY - JOUR A1 - Reichert, Ina A1 - Olney, Peter A1 - Lahmer, Tom T1 - Combined approach for optimal sensor placement and experimental verification in the context of tower-like structures JF - Journal of Civil Structural Health Monitoring N2 - When it comes to monitoring of huge structures, main issues are limited time, high costs and how to deal with the big amount of data. In order to reduce and manage them, respectively, methods from the field of optimal design of experiments are useful and supportive. Having optimal experimental designs at hand before conducting any measurements is leading to a highly informative measurement concept, where the sensor positions are optimized according to minimal errors in the structures’ models. For the reduction of computational time a combined approach using Fisher Information Matrix and mean-squared error in a two-step procedure is proposed under the consideration of different error types. The error descriptions contain random/aleatoric and systematic/epistemic portions. Applying this combined approach on a finite element model using artificial acceleration time measurement data with artificially added errors leads to the optimized sensor positions. These findings are compared to results from laboratory experiments on the modeled structure, which is a tower-like structure represented by a hollow pipe as the cantilever beam. Conclusively, the combined approach is leading to a sound experimental design that leads to a good estimate of the structure’s behavior and model parameters without the need of preliminary measurements for model updating. KW - Strukturmechanik KW - Finite-Elemente-Methode KW - tower-like structures KW - experimental validation KW - mean-squared error KW - fisher-information matrix Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210804-44701 UR - https://link.springer.com/article/10.1007/s13349-020-00448-7 VL - 2021 IS - volume 11 SP - 223 EP - 234 PB - Heidelberg CY - Springer ER - TY - JOUR A1 - Faridmehr, Iman A1 - Tahir, Mamood Md. A1 - Lahmer, Tom T1 - Classification System for Semi-Rigid Beam-to-Column Connections JF - LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES 11 N2 - The current study attempts to recognise an adequate classification for a semi-rigid beam-to-column connection by investigating strength, stiffness and ductility. For this purpose, an experimental test was carried out to investigate the moment-rotation (M-theta) features of flush end-plate (FEP) connections including variable parameters like size and number of bolts, thickness of end-plate, and finally, size of beams and columns. The initial elastic stiffness and ultimate moment capacity of connections were determined by an extensive analytical procedure from the proposed method prescribed by ANSI/AISC 360-10, and Eurocode 3 Part 1-8 specifications. The behaviour of beams with partially restrained or semi-rigid connections were also studied by incorporating classical analysis methods. The results confirmed that thickness of the column flange and end-plate substantially govern over the initial rotational stiffness of of flush end-plate connections. The results also clearly showed that EC3 provided a more reliable classification index for flush end-plate (FEP) connections. The findings from this study make significant contributions to the current literature as the actual response characteristics of such connections are non-linear. Therefore, such semirigid behaviour should be used to for an analysis and design method. KW - Tragfähigkeit KW - Stütze KW - Träger KW - Beam-to-column connection; semi-rigid; flush end-plate connection; moment-rotation curve Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170401-30988 SP - 2152 EP - 2175 ER - TY - JOUR A1 - Lahmer, Tom A1 - Knabe, Tina A1 - Nikulla, Susanne A1 - Reuter, Markus T1 - Bewertungsmethoden für Modelle des konstruktiven Ingenieurbaus BT - Sonderdruck‐DFG Graduiertenkolleg JF - Bautechnik N2 - Bewertungsmethoden für Modelle des konstruktiven Ingenieurbaus KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2011 SP - 60 EP - 64 ER - TY - JOUR A1 - Harirchian, Ehsan A1 - Lahmer, Tom A1 - Kumari, Vandana A1 - Jadhav, Kirti T1 - Application of Support Vector Machine Modeling for the Rapid Seismic Hazard Safety Evaluation of Existing Buildings JF - Energies N2 - The economic losses from earthquakes tend to hit the national economy considerably; therefore, models that are capable of estimating the vulnerability and losses of future earthquakes are highly consequential for emergency planners with the purpose of risk mitigation. This demands a mass prioritization filtering of structures to identify vulnerable buildings for retrofitting purposes. The application of advanced structural analysis on each building to study the earthquake response is impractical due to complex calculations, long computational time, and exorbitant cost. This exhibits the need for a fast, reliable, and rapid method, commonly known as Rapid Visual Screening (RVS). The method serves as a preliminary screening platform, using an optimum number of seismic parameters of the structure and predefined output damage states. In this study, the efficacy of the Machine Learning (ML) application in damage prediction through a Support Vector Machine (SVM) model as the damage classification technique has been investigated. The developed model was trained and examined based on damage data from the 1999 Düzce Earthquake in Turkey, where the building’s data consists of 22 performance modifiers that have been implemented with supervised machine learning. KW - Erdbeben KW - Maschinelles Lernen KW - earthquake vulnerability assessment KW - rapid visual screening KW - machine learning KW - support vector machine KW - buildings KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200707-41915 UR - https://www.mdpi.com/1996-1073/13/13/3340 VL - 2020 IS - volume 13, issue 13, 3340 PB - MDPI CY - Basel ER - TY - JOUR A1 - Lizarazu, Jorge A1 - Harirchian, Ehsan A1 - Shaik, Umar Arif A1 - Shareef, Mohammed A1 - Antoni-Zdziobek, Annie A1 - Lahmer, Tom T1 - Application of machine learning-based algorithms to predict the stress-strain curves of additively manufactured mild steel out of its microstructural characteristics JF - Results in Engineering N2 - The study presents a Machine Learning (ML)-based framework designed to forecast the stress-strain relationship of arc-direct energy deposited mild steel. Based on microstructural characteristics previously extracted using microscopy and X-ray diffraction, approximately 1000 new parameter sets are generated by applying the Latin Hypercube Sampling Method (LHSM). For each parameter set, a Representative Volume Element (RVE) is synthetically created via Voronoi Tessellation. Input raw data for ML-based algorithms comprises these parameter sets or RVE-images, while output raw data includes their corresponding stress-strain relationships calculated after a Finite Element (FE) procedure. Input data undergoes preprocessing involving standardization, feature selection, and image resizing. Similarly, the stress-strain curves, initially unsuitable for training traditional ML algorithms, are preprocessed using cubic splines and occasionally Principal Component Analysis (PCA). The later part of the study focuses on employing multiple ML algorithms, utilizing two main models. The first model predicts stress-strain curves based on microstructural parameters, while the second model does so solely from RVE images. The most accurate prediction yields a Root Mean Squared Error of around 5 MPa, approximately 1% of the yield stress. This outcome suggests that ML models offer precise and efficient methods for characterizing dual-phase steels, establishing a framework for accurate results in material analysis. KW - Maschinelles Lernen KW - Baustahl KW - Spannungs-Dehnungs-Beziehung KW - Arc-direct energy deposition KW - Mild steel KW - Dual phase steel KW - Stress-strain curve KW - OA-Publikationsfonds2023 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20231207-65028 UR - https://www.sciencedirect.com/science/article/pii/S2590123023007144 VL - 2023 IS - Volume 20 (2023) SP - 1 EP - 12 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Vu-Bac, N. A1 - Silani, Mohammad A1 - Lahmer, Tom A1 - Zhuang, Xiaoying A1 - Rabczuk, Timon T1 - A unified framework for stochastic predictions of Young's modulus of clay/epoxy nanocomposites (PCNs) JF - Computational Materials Science N2 - A unified framework for stochastic predictions of Young's modulus of clay/epoxy nanocomposites (PCNs) KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2015 SP - 520 EP - 535 ER - TY - JOUR A1 - Harirchian, Ehsan A1 - Kumari, Vandana A1 - Jadhav, Kirti A1 - Rasulzade, Shahla A1 - Lahmer, Tom A1 - Raj Das, Rohan T1 - A Synthesized Study Based on Machine Learning Approaches for Rapid Classifying Earthquake Damage Grades to RC Buildings JF - Applied Sciences N2 - A vast number of existing buildings were constructed before the development and enforcement of seismic design codes, which run into the risk of being severely damaged under the action of seismic excitations. This poses not only a threat to the life of people but also affects the socio-economic stability in the affected area. Therefore, it is necessary to assess such buildings’ present vulnerability to make an educated decision regarding risk mitigation by seismic strengthening techniques such as retrofitting. However, it is economically and timely manner not feasible to inspect, repair, and augment every old building on an urban scale. As a result, a reliable rapid screening methods, namely Rapid Visual Screening (RVS), have garnered increasing interest among researchers and decision-makers alike. In this study, the effectiveness of five different Machine Learning (ML) techniques in vulnerability prediction applications have been investigated. The damage data of four different earthquakes from Ecuador, Haiti, Nepal, and South Korea, have been utilized to train and test the developed models. Eight performance modifiers have been implemented as variables with a supervised ML. The investigations on this paper illustrate that the assessed vulnerability classes by ML techniques were very close to the actual damage levels observed in the buildings. KW - Maschinelles Lernen KW - Neuronales Netz KW - Machine learning KW - Building safety assessment KW - artificial neural networks KW - supervised learning KW - damaged buildings KW - rapid classification KW - OA-Publikationsfonds2021 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210818-44853 UR - https://www.mdpi.com/2076-3417/11/16/7540 VL - 2021 IS - Volume 11, issue 16, article 7540 SP - 1 EP - 33 PB - MDPI CY - Basel ER - TY - JOUR A1 - Ghorashi, Seyed Shahram A1 - Lahmer, Tom A1 - Bagherzadeh, Amir Saboor A1 - Zi, Goangseup A1 - Rabczuk, Timon T1 - A stochastic computational method based on goal-oriented error estimation for heterogeneous geological materials JF - Engineering Geology N2 - A stochastic computational method based on goal-oriented error estimation for heterogeneous geological materials KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2016 ER - TY - JOUR A1 - Vu-Bac, N. A1 - Lahmer, Tom A1 - Zhuang, Xiaoying A1 - Nguyen-Thoi, T. A1 - Rabczuk, Timon T1 - A software framework for probabilistic sensitivity analysis for computationally expensive models JF - Advances in Engineering Software N2 - A software framework for probabilistic sensitivity analysis for computationally expensive models KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2016 SP - 19 EP - 31 ER - TY - JOUR A1 - Alkam, Feras A1 - Lahmer, Tom T1 - A robust method of the status monitoring of catenary poles installed along high-speed electrified train tracks JF - Results in Engineering N2 - Electric trains are considered one of the most eco-friendly and safest means of transportation. Catenary poles are used worldwide to support overhead power lines for electric trains. The performance of the catenary poles has an extensive influence on the integrity of the train systems and, consequently, the connected human services. It became a must nowadays to develop SHM systems that provide the instantaneous status of catenary poles in- service, making the decision-making processes to keep or repair the damaged poles more feasible. This study develops a data-driven, model-free approach for status monitoring of cantilever structures, focusing on pre-stressed, spun-cast ultrahigh-strength concrete catenary poles installed along high-speed train tracks. The pro-posed approach evaluates multiple damage features in an unfied damage index, which leads to straightforward interpretation and comparison of the output. Besides, it distinguishes between multiple damage scenarios of the poles, either the ones caused by material degradation of the concrete or by the cracks that can be propagated during the life span of the given structure. Moreover, using a logistic function to classify the integrity of structure avoids the expensive learning step in the existing damage detection approaches, namely, using the modern machine and deep learning methods. The findings of this study look very promising when applied to other types of cantilever structures, such as the poles that support the power transmission lines, antenna masts, chimneys, and wind turbines. KW - Fahrleitung KW - Catenary poles KW - SHM KW - Model-free status monitoring KW - Sigmoid function KW - High-speed electric train KW - Schaden KW - OA-Publikationsfonds2021 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20211011-45212 UR - https://www.sciencedirect.com/science/article/pii/S2590123021000906?via%3Dihub VL - 2021 IS - volume 12, article 100289 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Nguyen-Tuan, Long A1 - Lahmer, Tom A1 - Datcheva, Maria A1 - Stoimenova, Eugenia A1 - Schanz, Tom T1 - A novel parameter identification approach for buffer elements involving complex coupled thermo-hydro-mechanical analyses JF - Computers and Geotechnics N2 - A novel parameter identification approach for buffer elements involving complex coupled thermo-hydro-mechanical analyses KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2016 SP - 23 EP - 32 ER - TY - JOUR A1 - Harirchian, Ehsan A1 - Kumari, Vandana A1 - Jadhav, Kirti A1 - Raj Das, Rohan A1 - Rasulzade, Shahla A1 - Lahmer, Tom T1 - A Machine Learning Framework for Assessing Seismic Hazard Safety of Reinforced Concrete Buildings JF - Applied Sciences N2 - Although averting a seismic disturbance and its physical, social, and economic disruption is practically impossible, using the advancements in computational science and numerical modeling shall equip humanity to predict its severity, understand the outcomes, and equip for post-disaster management. Many buildings exist amidst the developed metropolitan areas, which are senile and still in service. These buildings were also designed before establishing national seismic codes or without the introduction of construction regulations. In that case, risk reduction is significant for developing alternatives and designing suitable models to enhance the existing structure’s performance. Such models will be able to classify risks and casualties related to possible earthquakes through emergency preparation. Thus, it is crucial to recognize structures that are susceptible to earthquake vibrations and need to be prioritized for retrofitting. However, each building’s behavior under seismic actions cannot be studied through performing structural analysis, as it might be unrealistic because of the rigorous computations, long period, and substantial expenditure. Therefore, it calls for a simple, reliable, and accurate process known as Rapid Visual Screening (RVS), which serves as a primary screening platform, including an optimum number of seismic parameters and predetermined performance damage conditions for structures. In this study, the damage classification technique was studied, and the efficacy of the Machine Learning (ML) method in damage prediction via a Support Vector Machine (SVM) model was explored. The ML model is trained and tested separately on damage data from four different earthquakes, namely Ecuador, Haiti, Nepal, and South Korea. Each dataset consists of varying numbers of input data and eight performance modifiers. Based on the study and the results, the ML model using SVM classifies the given input data into the belonging classes and accomplishes the performance on hazard safety evaluation of buildings. KW - Erdbeben KW - Vulnerability KW - Earthquake KW - damaged buildings KW - earthquake safety assessment KW - soft computing techniques KW - rapid visual screening KW - Machine Learning KW - vulnerability assessment KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20201022-42744 UR - https://www.mdpi.com/2076-3417/10/20/7153 VL - 2020 IS - Volume 10, issue 20, article 7153 PB - MDPI CY - Basel ER - TY - JOUR A1 - Zhang, Chao A1 - Wang, Cuixia A1 - Lahmer, Tom A1 - He, Pengfei A1 - Rabczuk, Timon T1 - A dynamic XFEM formulation for crack identification JF - International Journal of Mechanics and Materials in Design N2 - A dynamic XFEM formulation for crack identification KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2016 SP - 427 EP - 448 ER - TY - JOUR A1 - Alalade, Muyiwa A1 - Reichert, Ina A1 - Köhn, Daniel A1 - Wuttke, Frank A1 - Lahmer, Tom ED - Qu, Chunxu ED - Gao, Chunxu ED - Zhang, Rui ED - Jia, Ziguang ED - Li, Jiaxiang T1 - A Cyclic Multi-Stage Implementation of the Full-Waveform Inversion for the Identification of Anomalies in Dams JF - Infrastructures N2 - For the safe and efficient operation of dams, frequent monitoring and maintenance are required. These are usually expensive, time consuming, and cumbersome. To alleviate these issues, we propose applying a wave-based scheme for the location and quantification of damages in dams. To obtain high-resolution “interpretable” images of the damaged regions, we drew inspiration from non-linear full-multigrid methods for inverse problems and applied a new cyclic multi-stage full-waveform inversion (FWI) scheme. Our approach is less susceptible to the stability issues faced by the standard FWI scheme when dealing with ill-posed problems. In this paper, we first selected an optimal acquisition setup and then applied synthetic data to demonstrate the capability of our approach in identifying a series of anomalies in dams by a mixture of reflection and transmission tomography. The results had sufficient robustness, showing the prospects of application in the field of non-destructive testing of dams. KW - Damm KW - Defekt KW - inverse analysis KW - damage identification KW - full-waveform inversion KW - dams KW - wave propagation KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20221201-48396 UR - https://www.mdpi.com/2412-3811/7/12/161 VL - 2022 IS - Volume 7, issue 12, article 161 PB - MDPI CY - Basel ER - TY - JOUR A1 - Harirchian, Ehsan A1 - Jadhav, Kirti A1 - Mohammad, Kifaytullah A1 - Aghakouchaki Hosseini, Seyed Ehsan A1 - Lahmer, Tom T1 - A Comparative Study of MCDM Methods Integrated with Rapid Visual Seismic Vulnerability Assessment of Existing RC Structures JF - Applied Sciences N2 - Recently, the demand for residence and usage of urban infrastructure has been increased, thereby resulting in the elevation of risk levels of human lives over natural calamities. The occupancy demand has rapidly increased the construction rate, whereas the inadequate design of structures prone to more vulnerability. Buildings constructed before the development of seismic codes have an additional susceptibility to earthquake vibrations. The structural collapse causes an economic loss as well as setbacks for human lives. An application of different theoretical methods to analyze the structural behavior is expensive and time-consuming. Therefore, introducing a rapid vulnerability assessment method to check structural performances is necessary for future developments. The process, as mentioned earlier, is known as Rapid Visual Screening (RVS). This technique has been generated to identify, inventory, and screen structures that are potentially hazardous. Sometimes, poor construction quality does not provide some of the required parameters; in this case, the RVS process turns into a tedious scenario. Hence, to tackle such a situation, multiple-criteria decision-making (MCDM) methods for the seismic vulnerability assessment opens a new gateway. The different parameters required by RVS can be taken in MCDM. MCDM evaluates multiple conflicting criteria in decision making in several fields. This paper has aimed to bridge the gap between RVS and MCDM. Furthermore, to define the correlation between these techniques, implementation of the methodologies from Indian, Turkish, and Federal Emergency Management Agency (FEMA) codes has been done. The effects of seismic vulnerability of structures have been observed and compared. KW - Erdbebensicherheit KW - damaged buildings KW - earthquake safety assessment KW - soft computing techniques KW - rapid visual screening KW - seismic risk estimation KW - Multi-criteria decision making KW - vulnerability assessment KW - OA-Publikationsfonds2020 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200918-42360 UR - https://www.mdpi.com/2076-3417/10/18/6411/htm VL - 2020 IS - Volume 10, issue 18, article 6411 PB - MDPI CY - Basel ER -