TY - JOUR A1 - Alsaad, Hayder A1 - Hartmann, Maria A1 - Völker, Conrad T1 - Hygrothermal simulation data of a living wall system for decentralized greywater treatment JF - Data in Brief N2 - This dataset presents the numerical analysis of the heat and moisture transport through a facade equipped with a living wall system designated for greywater treatment. While such greening systems provide many environmental benefits, they involve pumping large quantities of water onto the wall assembly, which can increase the risk of moisture in the wall as well as impaired energetic performance due to increased thermal conductivity with increased moisture content in the building materials. This dataset was acquired through numerical simulation using the coupling of two simulation tools, namely Envi-Met and Delphin. This coupling was used to include the complex role the plants play in shaping the near-wall environmental parameters in the hygrothermal simulations. Four different wall assemblies were investigated, each assembly was assessed twice: with and without the living wall. The presented data include the input and output parameters of the simulations, which were presented in the co-submitted article [1]. KW - Kupplung KW - Feuchteleitung KW - Heat transport KW - Moisture transport KW - Living wall KW - Wärmeübertragung KW - coupling KW - ENVI-Met KW - Delphin KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220106-45483 UR - https://www.sciencedirect.com/science/article/pii/S2352340921010167?via%3Dihub VL - 2022 IS - volume 40, article 107741 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Tschernyschkow, Anton T1 - Instationäre Wärmeleitung in geschichteten Wänden N2 - Analytische Lösung der Wärmeleitungsgleichung für inhomogene Medien um ortsveränderliche Materialeigenschaften zuzulassen, womit die sprunghafte Änderung der Stoffkennwerte näherungsweise erfasst werden kann. Dazu ist ein Sturm-Liouville-Problem zu lösen. KW - Wärmeleitung KW - Wärmeübertragung KW - Wand KW - Bauphysik KW - Mathematik KW - analytische Lösung KW - geschichtete Wände KW - mehrschichtige Wände KW - Wärmeleitungsgleichung KW - eindimensionale Wärmeleitung Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170914-36014 ER - TY - JOUR A1 - Völker, Conrad A1 - Mämpel, Silvio A1 - Kornadt, Oliver T1 - Measuring the human body’s micro‐climate using a thermal manikin JF - Indoor Air N2 - The human body is surrounded by a micro‐climate which results from its convective release of heat. In this study, the air temperature and flow velocity of this micro‐climate were measured in a climate chamber at various room temperatures, using a thermal manikin simulating the heat release of the human being. Different techniques (Particle Streak Tracking, thermography, anemometry, and thermistors) were used for measurement and visualization. The manikin surface temperature was adjusted to the particular indoor climate based on simulations with a thermoregulation model (UCBerkeley Thermal Comfort Model). We found that generally, the micro‐climate is thinner at the lower part of the torso, but expands going up. At the head, there is a relatively thick thermal layer, which results in an ascending plume above the head. However, the micro‐climate shape strongly depends not only on the body segment, but also on boundary conditions: the higher the temperature difference between the surface temperature of the manikin and the air temperature, the faster the air flow in the micro‐climate. Finally, convective heat transfer coefficients strongly increase with falling room temperature, while radiative heat transfer coefficients decrease. The type of body segment strongly influences the convective heat transfer coefficient, while only minimally influencing the radiative heat transfer coefficient. KW - Raumklima KW - Mikroklima KW - Wärmeübertragung KW - Strömungsmechanik KW - thermal manikin KW - climate chamber KW - micro climate KW - heat transfer coefficient KW - CFD KW - thermography Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20181025-38153 UR - https://onlinelibrary.wiley.com/doi/abs/10.1111/ina.12112 N1 - This is the peer reviewed version of the following article: "Measuring the human body’s micro‐climate using a thermal manikin", which has been published in final form at https://doi.org/10.1111/ina.12112. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. IS - 24, 6 SP - 567 EP - 579 ER - TY - THES A1 - Kuhne, Michael T1 - Modellierung des Energietransports durch Verglasungen T1 - Modelling of the transport of energy through thermal glazings N2 - Es werden sowohl analytische als auch numerische Verfahren zur Berechnung der Wärmeverluste von Verglasungen vorgestellt, wobei alle am Energietransport beteiligten Prozesse, die Wärmeleitung, die thermisch getriebenen Konvektionsströmungen und die infrarote Strahlungswechselwirkung, korrekt und vollständig berücksichtigt werden. Mit Hilfe numerischer Strömungssimulation werden Verglasungen systematisch hinsichtlich der Füllgasart, der Infrarotverspiegelung, der Einbaulage und des Scheibenabstandes sowie der Anzahl der Gaszwischenräume (Zwei-, Drei- und Vierscheiben-Verglasung) untersucht und verglichen. Die Abhängigkeit des k-Wertes von den Temperaturen der angrenzenden Klimate (Atmosphäre und Innenraum) wird dargestellt. N2 - The aim of this work is to calculate the heat losses of thermal glazings. Conduction, radiation and convection are described in detail. Both analytical and numerical approaches are presented. Using a program for Computational Fluid Dynamics (CFD) thermal glazings are investigated systematically. The influence of IR-reflecting coatings, kind of gas-filling, pane distance and number of panes is studied. Furthermore a dependence of the u-value on the temperature difference between room and atmosphere is described for certain gas-fillings. KW - Verglasung KW - Wärmeverlust KW - Strömungsfeld KW - Temperaturfeld KW - Finite-Volumen-Methode KW - Transportgleichung KW - Wärmeübertragung KW - Energietransport KW - Konvektion KW - Leitung KW - Strahlung KW - k-Wert KW - transport of energy KW - thermal glazings KW - conduction KW - radiation KW - convection Y1 - 1998 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20040220-458 ER -