TY - CHAP A1 - Jentsch, Mark F. ED - Kornadt, Oliver T1 - Entwicklung eines Sommerreferenzjahres zur Bestimmung der sommerlichen Überhitzung von Gebäuden T2 - Bauphysiktage Kaiserslautern 2015, Kaiserslautern, 21-22 Oktober 2015 N2 - Die Ableitung von sommer-fokussierten warmen Referenzjahren aus langjährigen Klimadaten erfolgt in Europa bisher nach unterschiedlichen, länderspezifischen Methoden, die sich in der Regel allein auf die Trockentemperatur beziehen und in der Auswahl eines zusammenhängenden realen Sommerhalbjahres resultieren. Simulationsergebnisse zur sommerlichen Überhitzung von natürlich belüfteten Gebäuden in Deutschland und Großbritannien zeigen jedoch für einige Wetterstationen weniger Überhitzung für Simulationen mit dem sommer-fokussierten Referenzjahr als für solche mit dem entsprechenden Testreferenzjahr (TRY) für den gleichen Ort. Dies gilt insbesondere dann, wenn einzelne Monate miteinander verglichen werden. Neben der Wahl eines kompletten Halbjahres, das sowohl extrem warme als auch vergleichsweise kühle Monate beinhalten kann, liegt dies vor allem begründet in der fehlenden Berücksichtigung der Solarstrahlung bei der Auswahl eines warmen Referenzjahres, die jedoch eine wichtige Rolle für sommerliche Überhitzungserscheinungen in Gebäuden spielt. Eine verlässliche, allgemein anerkannte Methode zur Erstellung von sommer-fokussierten Referenzjahren erscheint daher auch im Hinblick auf die rechtlichen Rahmenbedingungen in der Europäischen Union, die Strategien zur natürlichen Belüftung von Neubauten und Sanierungen begünstigen, erforderlich. Diese Arbeit präsentiert einen Ansatz zur Erstellung eines Sommerreferenzjahres (Summer Reference Year – SRY) aus dem TRY eines gegebenen Ortes und langjährigen Klimadaten. Die existierenden TRY-Daten werden hierbei skaliert, um den Bedingungen für Trockentemperatur und Solarstrahlung von nah-extremen Kandidatenjahren zu entsprechen, die separat über einen statistischen Ansatz ausgewählt werden. Anschließend werden Feuchttemperatur, Windgeschwindigkeit und Luftdruck des TRY durch lineare Korrelationen mit der Trockentemperatur angepasst, um die entsprechenden SRY-Daten zu erhalten. Der Vorteil dieser Methode liegt darin, dass das grundlegende Wettermuster des TRY erhalten bleibt und somit eine klare Relation zwischen SRY und TRY besteht, die eine Vergleichbarkeit von Simulationsergebnissen gewährleistet. Über vergleichende Gebäudesimulationen mit dem zugrundeliegenden TRY und langjährigen Klimadatensätzen kann nachgewiesen werden, dass sich das SRY zur Ermittlung sommerlicher Überhitzungserscheinungen in natürlich belüfteten Gebäuden eignet. Weiterhin kann gezeigt werden, dass das SRY im Gegensatz zur direkten Nutzung eines Kandidatenjahres für einen nah-extremen Sommer die Möglichkeit eines monatsscharfen Vergleichs mit dem TRY erlaubt und frei von wenig repräsentativen Besonderheiten ist, die in den entsprechenden Kandidatenjahren vorhanden sein können. KW - Bauphysik KW - Gebäude KW - Simulation KW - Überhitzung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170516-31058 PB - Eigenverlag der Technischen Universität Kaiserslautern CY - Kaiserslautern ER - TY - JOUR A1 - Bourikas, Leonidas A1 - James, Patrick A. B. A1 - Bahaj, AbuBakr S. A1 - Jentsch, Mark F. A1 - Shen, Tianfeng A1 - Chow, David H. C. A1 - Darkwa, Jo T1 - Transforming typical hourly simulation weather data files to represent urban locations by using a 3D urban unit representation with micro-climate simulations JF - Future Cities and Environment N2 - Urban and building energy simulation models are usually driven by typical meteorological year (TMY) weather data often in a TMY2 or EPW format. However, the locations where these historical datasets were collected (usually airports) generally do not represent the local, site specific micro-climates that cities develop. In this paper, a humid sub-tropical climate context has been considered. An idealised “urban unit model” of 250 m radius is being presented as a method of adapting commonly available weather data files to the local micro-climate. This idealised “urban unit model” is based on the main thermal and morphological characteristics of nine sites with residential/institutional (university) use in Hangzhou, China. The area of the urban unit was determined by the region of influence on the air temperature signal at the centre of the unit. Air temperature and relative humidity were monitored and the characteristics of the surroundings assessed (eg green-space, blue-space, built form). The “urban unit model” was then implemented into micro-climatic simulations using a Computational Fluid Dynamics – Surface Energy Balance analysis tool (ENVI-met, Version 4). The “urban unit model” approach used here in the simulations delivered results with performance evaluation indices comparable to previously published work (for air temperature; RMSE <1, index of agreement d > 0.9). The micro-climatic simulation results were then used to adapt the air temperature and relative humidity of the TMY file for Hangzhou to represent the local, site specific morphology under three different weather forcing cases, (ie cloudy/rainy weather (Group 1), clear sky, average weather conditions (Group 2) and clear sky, hot weather (Group 3)). Following model validation, two scenarios (domestic and non-domestic building use) were developed to assess building heating and cooling loads against the business as usual case of using typical meteorological year data files. The final “urban weather projections” obtained from the simulations with the “urban unit model” were used to compare the degree days amongst the reference TMY file, the TMY file with a bulk UHI offset and the TMY file adapted for the site-specific micro-climate (TMY-UWP). The comparison shows that Heating Degree Days (HDD) of the TMY file (1598 days) decreased by 6 % in the “TMY + UHI” case and 13 % in the “TMY-UWP” case showing that the local specific micro-climate is attributed with an additional 7 % (ie from 6 to 13 %) reduction in relation to the bulk UHI effect in the city. The Cooling Degree Days (CDD) from the “TMY + UHI” file are 17 % more than the reference TMY (207 days) and the use of the “TMY-UWP” file results to an additional 14 % increase in comparison with the “TMY + UHI” file (ie from 17 to 31 %). This difference between the TMY-UWP and the TMY + UHI files is a reflection of the thermal characteristics of the specific urban morphology of the studied sites compared to the wider city. A dynamic thermal simulation tool (TRNSYS) was used to calculate the heating and cooling load demand change in a domestic and a non-domestic building scenario. The heating and cooling loads calculated with the adapted TMY-UWP file show that in both scenarios there is an increase by approximately 20 % of the cooling load and a 20 % decrease of the heating load. If typical COP values for a reversible air-conditioning system are 2.0 for heating and 3.5 for cooling then the total electricity consumption estimated with the use of the “urbanised” TMY-UWP file will be decreased by 11 % in comparison with the “business as usual” (ie reference TMY) case. Overall, it was found that the proposed method is appropriate for urban and building energy performance simulations in humid sub-tropical climate cities such as Hangzhou, addressing some of the shortfalls of current simulation weather data sets such as the TMY. KW - Mikroklima KW - Simulation KW - Stadt KW - Wetter KW - Idealised urban unit model, Micro-climate simulations, Urban weather projections, Cities Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170418-31348 UR - http://link.springer.com/article/10.1186/s40984-016-0020-4 ER -