TY - CHAP A1 - Ahmad, Sofyan A1 - Zabel, Volkmar A1 - Könke, Carsten T1 - WAVELET-BASED INDICATORS FOR RESPONSE SURFACE MODELS IN DAMAGE IDENTIFICATION OF STRUCTURES T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - In this paper, wavelet energy damage indicator is used in response surface methodology to identify the damage in simulated filler beam railway bridge. The approximate model is addressed to include the operational and surrounding condition in the assessment. The procedure is split into two stages, the training and detecting phase. During training phase, a so-called response surface is built from training data using polynomial regression and radial basis function approximation approaches. The response surface is used to detect the damage in structure during detection phase. The results show that the response surface model is able to detect moderate damage in one of bridge supports while the temperatures and train velocities are varied. KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren KW - Angewandte Informatik Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170306-27588 SN - 1611-4086 ER - TY - CHAP ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar T1 - Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen : 20. bis 22.7. 2015, Bauhaus-Universität Weimar T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - The 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 20th till 22nd July 2015. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference. We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference! KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren KW - Building Information Modeling KW - Optimization in engineering applications KW - Data, information and knowledge modeling in civil engineering KW - Function theoretic methods and PDE in engineering sciences KW - Mathematical methods for (robotics and) computer vision KW - Numerical modeling in engineering Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20150828-24515 SN - 1611-4086 ER - TY - CHAP A1 - Theiler, Michael A1 - Könke, Carsten ED - Maia, Nuno T1 - Damping in Bolted Joints T2 - Proceedings of International Conference on Structural Engineering Dynamics (ICEDyn) 2013 N2 - With the help of modern CAE-based simulation processes, it is possible to predict the dynamic behavior of fatigue strength problems in order to improve products of many industries, e.g. the building, the machine construction or the automotive industry. Amongst others, it can be used to improve the acoustic design of automobiles in an early development stage. Nowadays, the acoustics of automobiles plays a crucial role in the process of vehicle development. Because of the advanced demand of comfort and due to statutory rules the manufacturers are faced with the challenge of optimizing their car’s sound emissions. The optimization includes not only the reduction of noises. Lately with the trend to hybrid and electric cars, it has been shown that vehicles can become too quiet. Thus, the prediction of structural and acoustic properties based on FE-simulations is becoming increasingly important before any experimental prototype is examined. With the state of the art, qualitative comparisons between different implementations are possible. However, an accurate and reliable quantitative prediction is still a challenge. One aspect in the context of increasing the prediction quality of acoustic (or general oscillating) problems - especially in power-trains of automobiles - is the more accurate implementation of damping in joint structures. While material damping occurs globally and homogenous in a structural system, the damping due to joints is a very local problem, since energy is especially dissipated in the vicinity of joints. This paper focusses on experimental and numerical studies performed on a single (extracted) screw connection. Starting with experimental studies that are used to identify the underlying physical model of the energy loss, the locally influencing parameters (e.g. the damping factor) should be identified. In contrast to similar research projects, the approach tends to a more local consideration within the joint interface. Tangential stiffness and energy loss within the interface are spatially distributed and interactions between the influencing parameters are regarded. As a result, the damping matrix is no longer proportional to mass or stiffness matrix, since it is composed of the global material damping and the local joint damping. With this new approach, the prediction quality can be increased, since the local distribution of the physical parameters within the joint interface corresponds much closer to the reality. KW - Damping Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20130701-19709 SN - 978-989-96276-4-2 ER -