TY - CHAP A1 - Ahmad, Sofyan A1 - Zabel, Volkmar A1 - Könke, Carsten T1 - WAVELET-BASED INDICATORS FOR RESPONSE SURFACE MODELS IN DAMAGE IDENTIFICATION OF STRUCTURES T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - In this paper, wavelet energy damage indicator is used in response surface methodology to identify the damage in simulated filler beam railway bridge. The approximate model is addressed to include the operational and surrounding condition in the assessment. The procedure is split into two stages, the training and detecting phase. During training phase, a so-called response surface is built from training data using polynomial regression and radial basis function approximation approaches. The response surface is used to detect the damage in structure during detection phase. The results show that the response surface model is able to detect moderate damage in one of bridge supports while the temperatures and train velocities are varied. KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren KW - Angewandte Informatik Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170306-27588 SN - 1611-4086 ER - TY - JOUR A1 - Brehm, Maik A1 - Zabel, Volkmar A1 - Bucher, Christian T1 - An automatic mode pairing strategy using an enhanced modal assurance citerion based on modal strain energies JF - Journal of Sound and Vibration N2 - In the context of finite element model updating using output-only vibration test data, natural frequencies and mode shapes are used as validation criteria. Consequently, the correct pairing of experimentally obtained and numerically derived natural frequencies and mode shapes is important. In many cases, only limited spatial information is available and noise is present in the measurements. Therefore, the automatic selection of the most likely numerical mode shape corresponding to a particular experimentally identified mode shape can be a difficult task. The most common criterion for indicating corresponding mode shapes is the modal assurance criterion. Unfortunately, this criterion fails in certain cases and is not reliable for automatic approaches. In this paper, the purely mathematical modal assurance criterion will be enhanced by additional physical information from the numerical model in terms of modal strain energies. A numerical example and a benchmark study with experimental data are presented to show the advantages of the proposed energy-based criterion in comparison to the traditional modal assurance criterion. KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2010 U6 - http://dx.doi.org/10.1016/j.jsv.2010.07.006 SP - 5375 EP - 5392 ER - TY - JOUR A1 - Brehm, Maik A1 - Zabel, Volkmar A1 - Bucher, Christian T1 - Optimal reference sensor positions for applications in model updating using output-only vibration test data based on random excitation: Part 2 - improved search strategy and experimental case study JF - Mechanical Systems and Signal Processing N2 - Optimal reference sensor positions for applications in model updating using output-only vibration test data based on random excitation: Part 2 - improved search strategy and experimental case study KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2011 ER - TY - CHAP A1 - Brehm, Maik A1 - Zabel, Volkmar A1 - Bucher, Christian A1 - Ribeiro, D. ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - AN AUTOMATIC MODE SELECTION STRATEGY FOR MODEL UPDATING USING THE MODAL ASSURANCE CRITERION AND MODAL STRAIN ENERGIES N2 - In the context of finite element model updating using vibration test data, natural frequencies and mode shapes are used as validation criteria. Consequently, the order of natural frequencies and mode shapes is important. As only limited spatial information is available and noise is present in the measurements, the automatic selection of the most likely numerical mode shape corresponding to a measured mode shape is a difficult task. The most common criterion to indicate corresponding mode shapes is the modal assurance criterion. Unfortunately, this criterion fails in certain cases. In this paper, the pure mathematical modal assurance criterion will be enhanced by additional physical information of the numerical model in terms of modal strain energies. A numerical example and a benchmark study with real measured data are presented to show the advantages of the enhanced energy based criterion in comparison to the traditional modal assurance criterion. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28330 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - JOUR A1 - Keitel, Holger A1 - Karaki, Ghada A1 - Lahmer, Tom A1 - Nikulla, Susanne A1 - Zabel, Volkmar T1 - Evaluation of coupled partial models in structural engineering using graph theory and sensitivity analysis JF - Engineering structures N2 - Evaluation of coupled partial models in structural engineering using graph theory and sensitivity analysis KW - Angewandte Mathematik KW - Stochastik KW - Strukturmechanik Y1 - 2011 SP - 3726 EP - 3736 ER - TY - JOUR A1 - Luu, M. A1 - Martinez-Rodrigo, M.D. A1 - Zabel, Volkmar A1 - Könke, Carsten T1 - H∞ optimization of fluid viscous dampers for reducing vibrations of high-speed railway bridges JF - Journal of Sound and Vibration N2 - H∞ optimization of fluid viscous dampers for reducing vibrations of high-speed railway bridges KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2014 SP - 2421 EP - 2442 ER - TY - JOUR A1 - Zabel, Volkmar T1 - An application of discrete wavelet analysis and connection coefficients to parametric system identification JF - Structural Health Monitoring N2 - An application of discrete wavelet analysis and connection coefficients to parametric system identification KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2005 SP - 5 EP - 18 ER - TY - JOUR A1 - Zabel, Volkmar A1 - Brehm, Maik T1 - Das dynamische Verhalten von Eisenbahnbrücken mit kurzer Spannweite - numerische und experimentelle Untersuchungen JF - Bauingenieur, D-A-CH-Mitteilungsblatt N2 - Das dynamische Verhalten von Eisenbahnbrücken mit kurzer Spannweite - numerische und experimentelle Untersuchungen KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2008 ER -