TY - JOUR A1 - Abdelnour, Mena A1 - Zabel, Volkmar T1 - Modal identification of structures with a dynamic behaviour characterised by global and local modes at close frequencies JF - Acta Mechanica N2 - Identification of modal parameters of a space frame structure is a complex assignment due to a large number of degrees of freedom, close natural frequencies, and different vibrating mechanisms. Research has been carried out on the modal identification of rather simple truss structures. So far, less attention has been given to complex three-dimensional truss structures. This work develops a vibration-based methodology for determining modal information of three-dimensional space truss structures. The method uses a relatively complex space truss structure for its verification. Numerical modelling of the system gives modal information about the expected vibration behaviour. The identification process involves closely spaced modes that are characterised by local and global vibration mechanisms. To distinguish between local and global vibrations of the system, modal strain energies are used as an indicator. The experimental validation, which incorporated a modal analysis employing the stochastic subspace identification method, has confirmed that considering relatively high model orders is required to identify specific mode shapes. Especially in the case of the determination of local deformation modes of space truss members, higher model orders have to be taken into account than in the modal identification of most other types of structures. KW - Fachwerkbau KW - Holzkonstruktion KW - Schwingung KW - three-dimensional truss structures KW - vibration-based methodology KW - numerical modelling Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230525-63822 UR - https://link.springer.com/article/10.1007/s00707-023-03598-z VL - 2023 SP - 1 EP - 21 PB - Springer CY - Wien ER - TY - THES A1 - Schlegel, Roger T1 - Numerische Berechnung von Mauerwerkstrukturen in homogenen und diskreten Modellierungsstrategien T1 - Numerical computation of masonry structures using homogenious and discrete modelling strategies N2 - Im Zentrum der Arbeit stehen die Entwicklung, Verifikation, Implementierung und Leistungsfähigkeit numerischer Berechnungsmodelle für Mauerwerk im Rahmen der Kontinuums- und Diskontinuumsmechanik. Makromodelle beschreiben das Mauerwerk als verschmiertes Ersatzkontinuum. Mikromodelle berücksichtigen durch die Modellierung der einzelnen Steine und Fugen die Struktur des Mauerwerkverbandes. Soll darüber hinaus der durch die Querdehnungsinteraktion zwischen Stein und Mörtel hervorgerufene heterogene Spannungszustand im Mauerwerk abgebildet werden, so ist ein detailliertes Mikromodell, welches Steine und Fugen in ihren exakten geometrischen Dimensionen berücksichtigt, erforderlich. Demgegenüber steht die vereinfachte Mikromodellierung, bei der die Fugen mit Hilfe von Kontaktalgorithmen beschrieben werden. Im Rahmen der Makromodellierung werden neue räumliche Materialmodelle für verschiedene ein- und mehrschalige Mauerwerkarten hergeleitet. Die vorgestellten Modelle berücksichtigen die Anisotropie der Steifigkeiten, der Festigkeiten sowie des Ver- und Entfestigungsverhaltens. Die numerische Implementation erfolgt mit Hilfe moderner elastoplastischer Algorithmen im Rahmen der impliziten Finite Element Methode in das Programm ANSYS. Innerhalb der detaillierten Mikromodellierung wird ein neues, aus Materialbeschreibungen für Stein, Mörtel sowie deren Verbund bestehendes nichtlineares Berechnungsmodell entwickelt und in das Programm ANSYS implementiert. Die diskontinuumsmechanische Beschreibung von Mauerwerk im Rahmen der vereinfachten Mikromodellierung erfolgt unter Verwendung der expliziten Distinkt Element Methode mit Hilfe der Programme UDEC und 3DEC. An praktischen Beispielen werden Probleme der Tragfähigkeitsbewertung gemauerter Bogenbrücken, Möglichkeiten zur Bewertung vorhandener Rissbildungen und Schädigungen an historischen Mauerwerkstrukturen und Traglastberechnungen an gemauerten Stützen ausgewertet und analysiert. N2 - This dissertation presents the development, verification, implementation and efficiency of numerical models for masonry using continuum mechanics and discontinuum mechanics. For macro modelling three-dimensional elasto-plastic continuum models for regular and irregular, single- and multi-leaf masonry types is developed. The constitutive model is based on the multisurface plasticity theory and includes anisotropic elastic and inelastic behaviour, depending on the orientation of the masonry joints. The yield domain, its hardening law and softening law are defined according to experimental results. On this basis, it is possible to simulate masonry-specific failure and damage mechanisms. For consistent numeric implementation, modern elasto-plastic algorithms were used, including the Return Mapping procedure for local iteration at the integration point level, as well as consistent tangent operators and the Newton-Raphson method. The models were implemented into the implicit Finite-Element code ANSYS. For the detailed micro modelling strategy, a new computational model consist of material models for mortar, stone and bond is developed. For the simplified micro modelling strategy, the explicit distinct element method is used to describe the masonry assembly as a discontinuum. The verification analyses show good concordance between experimental and numerical results for different masonry types. The efficiency of the computation models is finally demonstrated, using sample calculations of large masonry structures. KW - Mauerwerk KW - Numerisches Verfahren KW - Kontinuumsmechanik KW - Modellierung KW - Makrosimulation KW - Mikrosimulation KW - Diskontinuumsmechanik KW - masonry KW - numerical modelling KW - continuum mechanic KW - discontinuum mechanic Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20041213-2369 ER -