TY - JOUR A1 - Gürlebeck, Klaus A1 - Legatiuk, Dmitrii A1 - Webber, Kemmar T1 - Operator Calculus Approach to Comparison of Elasticity Models for Modelling of Masonry Structures JF - Mathematics N2 - The solution of any engineering problem starts with a modelling process aimed at formulating a mathematical model, which must describe the problem under consideration with sufficient precision. Because of heterogeneity of modern engineering applications, mathematical modelling scatters nowadays from incredibly precise micro- and even nano-modelling of materials to macro-modelling, which is more appropriate for practical engineering computations. In the field of masonry structures, a macro-model of the material can be constructed based on various elasticity theories, such as classical elasticity, micropolar elasticity and Cosserat elasticity. Evidently, a different macro-behaviour is expected depending on the specific theory used in the background. Although there have been several theoretical studies of different elasticity theories in recent years, there is still a lack of understanding of how modelling assumptions of different elasticity theories influence the modelling results of masonry structures. Therefore, a rigorous approach to comparison of different three-dimensional elasticity models based on quaternionic operator calculus is proposed in this paper. In this way, three elasticity models are described and spatial boundary value problems for these models are discussed. In particular, explicit representation formulae for their solutions are constructed. After that, by using these representation formulae, explicit estimates for the solutions obtained by different elasticity theories are obtained. Finally, several numerical examples are presented, which indicate a practical difference in the solutions. KW - Mauerwerk KW - Elastizitätstheorie KW - Mathematische Modellierung KW - quaternionic analysis KW - mathematical modelling KW - operator calculus KW - model comparison KW - micropolar elasticity KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220721-46726 UR - https://www.mdpi.com/2227-7390/10/10/1670 VL - 2022 IS - Volume 10, issue 10, article 1670 SP - 1 EP - 22 PB - MDPI CY - Basel ER - TY - JOUR A1 - Rabczuk, Timon A1 - Zhuang, Xiaoying A1 - Oterkus, Erkan T1 - Editorial: Computational modeling based on nonlocal theory JF - Engineering with Computers N2 - Nonlocal theories concern the interaction of objects, which are separated in space. Classical examples are Coulomb’s law or Newton’s law of universal gravitation. They had signficiant impact in physics and engineering. One classical application in mechanics is the failure of quasi-brittle materials. While local models lead to an ill-posed boundary value problem and associated mesh dependent results, nonlocal models guarantee the well-posedness and are furthermore relatively easy to implement into commercial computational software. KW - Computersimulation KW - Mathematische Modellierung KW - computational modeling KW - nonlocal theory Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230517-63658 UR - https://link.springer.com/article/10.1007/s00366-022-01775-7 VL - 2023 IS - Volume 39, issue 3 PB - Springer CY - London ER -