TY - THES A1 - Anderka, Maik T1 - Analyzing and Predicting Quality Flaws in User-generated Content: The Case of Wikipedia N2 - Web applications that are based on user-generated content are often criticized for containing low-quality information; a popular example is the online encyclopedia Wikipedia. The major points of criticism pertain to the accuracy, neutrality, and reliability of information. The identification of low-quality information is an important task since for a huge number of people around the world it has become a habit to first visit Wikipedia in case of an information need. Existing research on quality assessment in Wikipedia either investigates only small samples of articles, or else deals with the classification of content into high-quality or low-quality. This thesis goes further, it targets the investigation of quality flaws, thus providing specific indications of the respects in which low-quality content needs improvement. The original contributions of this thesis, which relate to the fields of user-generated content analysis, data mining, and machine learning, can be summarized as follows: (1) We propose the investigation of quality flaws in Wikipedia based on user-defined cleanup tags. Cleanup tags are commonly used in the Wikipedia community to tag content that has some shortcomings. Our approach is based on the hypothesis that each cleanup tag defines a particular quality flaw. (2) We provide the first comprehensive breakdown of Wikipedia's quality flaw structure. We present a flaw organization schema, and we conduct an extensive exploratory data analysis which reveals (a) the flaws that actually exist, (b) the distribution of flaws in Wikipedia, and, (c) the extent of flawed content. (3) We present the first breakdown of Wikipedia's quality flaw evolution. We consider the entire history of the English Wikipedia from 2001 to 2012, which comprises more than 508 million page revisions, summing up to 7.9 TB. Our analysis reveals (a) how the incidence and the extent of flaws have evolved, and, (b) how the handling and the perception of flaws have changed over time. (4) We are the first who operationalize an algorithmic prediction of quality flaws in Wikipedia. We cast quality flaw prediction as a one-class classification problem, develop a tailored quality flaw model, and employ a dedicated one-class machine learning approach. A comprehensive evaluation based on human-labeled Wikipedia articles underlines the practical applicability of our approach. KW - Data Mining KW - Machine Learning KW - Wikipedia KW - User-generated Content Analysis KW - Information Quality Assessment KW - Quality Flaw Prediction Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20130709-19778 ER - TY - THES A1 - Lipka, Nedim T1 - Modeling Non-Standard Text Classification Tasks N2 - Text classification deals with discovering knowledge in texts and is used for extracting, filtering, or retrieving information in streams and collections. The discovery of knowledge is operationalized by modeling text classification tasks, which is mainly a human-driven engineering process. The outcome of this process, a text classification model, is used to inductively learn a text classification solution from a priori classified examples. The building blocks of modeling text classification tasks cover four aspects: (1) the way examples are represented, (2) the way examples are selected, (3) the way classifiers learn from examples, and (4) the way models are selected. This thesis proposes methods that improve the prediction quality of text classification solutions for unseen examples, especially for non-standard tasks where standard models do not fit. The original contributions are related to the aforementioned building blocks: (1) Several topic-orthogonal text representations are studied in the context of non-standard tasks and a new representation, namely co-stems, is introduced. (2) A new active learning strategy that goes beyond standard sampling is examined. (3) A new one-class ensemble for improving the effectiveness of one-class classification is proposed. (4) A new model selection framework to cope with subclass distribution shifts that occur in dynamic environments is introduced. KW - Text Classification KW - Machine Learning Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20130307-18626 ER -