TY - THES A1 - Winkel, Benjamin T1 - A three-dimensional model of skeletal muscle for physiological, pathological and experimental mechanical simulations T1 - Ein dreidimensionales Skelettmuskel-Modell für physiologische, pathologische und experimentelle mechanische Simulationen N2 - In recent decades, a multitude of concepts and models were developed to understand, assess and predict muscular mechanics in the context of physiological and pathological events. Most of these models are highly specialized and designed to selectively address fields in, e.g., medicine, sports science, forensics, product design or CGI; their data are often not transferable to other ranges of application. A single universal model, which covers the details of biochemical and neural processes, as well as the development of internal and external force and motion patterns and appearance could not be practical with regard to the diversity of the questions to be investigated and the task to find answers efficiently. With reasonable limitations though, a generalized approach is feasible. The objective of the work at hand was to develop a model for muscle simulation which covers the phenomenological aspects, and thus is universally applicable in domains where up until now specialized models were utilized. This includes investigations on active and passive motion, structural interaction of muscles within the body and with external elements, for example in crash scenarios, but also research topics like the verification of in vivo experiments and parameter identification. For this purpose, elements for the simulation of incompressible deformations were studied, adapted and implemented into the finite element code SLang. Various anisotropic, visco-elastic muscle models were developed or enhanced. The applicability was demonstrated on the base of several examples, and a general base for the implementation of further material models was developed and elaborated. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2020,3 KW - Biomechanik KW - Nichtlineare Finite-Elemente-Methode KW - Muskel KW - Brustkorb KW - Muscle model KW - FEM KW - Biomechanics KW - Incompressibility KW - Thorax Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20201211-43002 ER - TY - THES A1 - Eckardt, Stefan T1 - Adaptive heterogeneous multiscale models for the nonlinear simulation of concrete N2 - The nonlinear behavior of concrete can be attributed to the propagation of microcracks within the heterogeneous internal material structure. In this thesis, a mesoscale model is developed which allows for the explicit simulation of these microcracks. Consequently, the actual physical phenomena causing the complex nonlinear macroscopic behavior of concrete can be represented using rather simple material formulations. On the mesoscale, the numerical model explicitly resolves the components of the internal material structure. For concrete, a three-phase model consisting of aggregates, mortar matrix and interfacial transition zone is proposed. Based on prescribed grading curves, an efficient algorithm for the generation of three-dimensional aggregate distributions using ellipsoids is presented. In the numerical model, tensile failure of the mortar matrix is described using a continuum damage approach. In order to reduce spurious mesh sensitivities, introduced by the softening behavior of the matrix material, nonlocal integral-type material formulations are applied. The propagation of cracks at the interface between aggregates and mortar matrix is represented in a discrete way using a cohesive crack approach. The iterative solution procedure is stabilized using a new path following constraint within the framework of load-displacement-constraint methods which allows for an efficient representation of snap-back phenomena. In several examples, the influence of the randomly generated heterogeneous material structure on the stochastic scatter of the results is analyzed. Furthermore, the ability of mesoscale models to represent size effects is investigated. Mesoscale simulations require the discretization of the internal material structure. Compared to simulations on the macroscale, the numerical effort and the memory demand increases dramatically. Due to the complexity of the numerical model, mesoscale simulations are, in general, limited to small specimens. In this thesis, an adaptive heterogeneous multiscale approach is presented which allows for the incorporation of mesoscale models within nonlinear simulations of concrete structures. In heterogeneous multiscale models, only critical regions, i.e. regions in which damage develops, are resolved on the mesoscale, whereas undamaged or sparsely damage regions are modeled on the macroscale. A crucial point in simulations with heterogeneous multiscale models is the coupling of sub-domains discretized on different length scales. The sub-domains differ not only in the size of the finite elements but also in the constitutive description. In this thesis, different methods for the coupling of non-matching discretizations - constraint equations, the mortar method and the arlequin method - are investigated and the application to heterogeneous multiscale models is presented. Another important point is the detection of critical regions. An adaptive solution procedure allowing the transfer of macroscale sub-domains to the mesoscale is proposed. In this context, several indicators which trigger the model adaptation are introduced. Finally, the application of the proposed adaptive heterogeneous multiscale approach in nonlinear simulations of concrete structures is presented. N2 - Das nichtlineare Materialverhalten von Beton ist durch die Entwicklung von Mikrorissen innerhalb der heterogenen Materialstruktur gekennzeichnet. In dieser Arbeit wird ein Mesoskalenmodell entwickelt, welches die einzelnen Bestandteile der Materialstruktur explizit auflöst und somit die Simulation dieser Mikrorisse erlaubt. Dadurch können die wirklichen physikalischen Vorgänge, welche das komplexe nichtlineare Verhalten von Beton verursachen, durch relativ einfache Materialformulierungen abgebildet werden. Für Beton wird auf der Mesoskala ein 3-Phasenmodell vorgeschlagen, bestehend aus groben Zuschlägen, Mörtelmatrix und Übergangszone zwischen Zuschlag und Matrix. In diesem Zusammenhang wird ein effizienter Algorithmus vorgestellt, welcher ausgehend von einer gegebenen Sieblinie dreidimensionale Kornstrukturen mittels Ellipsoiden simuliert. Im Mesoskalenmodell wird das Zugversagen der Mörtelmatrix durch einen Kontinuumsansatz beschrieben. Um Netzabhängigkeiten, welche durch das Entfestigungsverhalten des Materials hervorgerufen werden, zu reduzieren, kommen nichtlokale Materialformulierungen zum Einsatz. Risse innerhalb der Übergangszone zwischen Zuschlag und Matrix werden, basierend auf einem kohäsiven Modell, mittels eines diskreten Rissansatzes abgebildet. Die Verwendung einer neuen Nebenbedingung innerhalb der Last-Verschiebungs-Zwangsmethode führt zu einer Stabilisierung des iterativen Lösungverfahrens, so dass eine effiziente Simulation von Snap-back Phänomenen möglich wird. Anhand von Beispielen wird gezeigt, dass Mesoskalenmodelle die stochastische Streuung von Ergebnissen und Maßstabseffekte abbilden können. Da auf der Mesoskala die Diskretisierung der inneren Materialstruktur erforderlich ist, steigt im Vergleich zu Simulationen auf der Makroskala der numerische Aufwand erheblich. Aufgrund der Komplexität des numerischen Modells sind Mesoskalensimulationen in der Regel auf kleine Probekörper beschränkt. In dieser Arbeit wird ein adaptiver heterogener Mehrskalenansatz vorgestellt, welcher die Verwendung von Mesoskalenmodellen in nichtlinearen Simulationen von Betonstrukturen erlaubt. In heterogenen Mehrskalenmodellen werden nur kritische Bereiche auf der Mesoskala aufgelöst, während ungeschädigte Bereiche auf der Makroskala abgebildet werden. Ein wichtiger Aspekt in Simulationen mit heterogenen Mehrskalenmodellen ist die Kopplung der auf unterschiedlichen Längenskalen diskretisierten Teilgebiete. Diese unterscheiden sich nicht nur in der Größe der finiten Elemente sondern auch in der Beschreibung des Materials. Verschiedene Methoden zur Kopplung nicht übereinstimmender Vernetzungen - Kopplungsgleichungen, die Mortar-Methode und die Arlequin-Methode - werden untersucht und ihre Anwendung in heterogenen Mehrskalenmodellen wird gezeigt. Ein weiterer wichtiger Aspekt ist die Bestimmung kritischer Regionen. Eine adaptive Lösungsstrategie wird entwickelt, welche die Umwandlung von Makroskalengebieten auf die Mesoskala erlaubt. In diesem Zusammenhang werden Indikatoren vorgestellt, die eine Modellanpassung auslösen. Anhand nichtlinearer Simulationen von Betonstrukturen wird die Anwendung des vorgestellten adaptiven heterogenen Mehrskalenansatzes demonstriert. T2 - Adaptive heterogene Mehrskalenmodelle zur nichtlinearen Simulation von Beton T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2010,1 KW - Beton KW - Mehrskalenanalyse KW - Finite-Elemente-Methode KW - Nichtlineare Finite-Elemente-Methode KW - Schadensmechanik KW - Mehrskalenmodell KW - Adaptives Verfahren KW - concrete KW - multiscale method KW - finite element method KW - continuum damage mechanics KW - adaptive simulation Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20100317-15023 ER - TY - THES A1 - Ebert, Matthias T1 - Experimentelle und numerische Untersuchung des dynamischen Verhaltens von Stahlbetontragwerken unter Berücksichtigung stochastischer Eigenschaften N2 - Der Zusammenhang zwischen Schädigung und der Veränderung dynamischer und statischer Eigenschaften von Stahlbetonstrukturen wird untersucht. Auf der einen Seite stehen die statischen Lastversuche in Verbindung mit dynamischen Experimenten an Stahlbetonstrukturen (Platten und Balken). Auf der anderen Seite wird für die Balkenstrukturen ein nichtlineares Stochastisches Finite Elemente Modell entwickelt. Dies berücksichtigt zufällige Material- und Festigkeitseigenschaften durch räumlich korrelierte Zufallsfelder. So werden stochastische Rissentwicklungen für den Stahlbeton simuliert. Für die Berechnungen vieler Realisationen und damit verschiedenartige "Lebensgeschichten" einer Struktur wird als Monte Carlo Methode Latin Hypercube Sampling verwendet. Die Auswertung der Strukturantworten für die Lastgeschichte zeigt den Einfluss der zufälligen Eigenschaften auf die Schädigungsentwicklung. Die Arbeit leistet einen Beitrag zur Bewertung und zum zukünftigen Einsatz dynamischer Untersuchungsmethoden im Bauwesen. N2 - The relation between damage and the changing of dynamic and static properties of R/C structures is investigated. On the one side static experiments in relation with dynamic experiments of R/C structures (plates and beams) are performed. On the other side a nonlinear Stochastic Finite Element Model is developed. The model considers stochastic material and strength properties by spatial correlated random fields. So a random crack evolution for the R/C beams are simulated. As Monte Carlo Method Latin Hypercube Sampling is used to calculate a lot of samples and so various "live histories" of the structure. The evaluation of structure response for the load history indicates the influence of stochastic properties on the damage evolution. The work gives a contribution to the assessment and the use of dynamic investigation methods in the future in civil engineering. KW - Stahlbetonkonstruktion KW - Tragverhalten KW - Stochastische Analysis KW - Dynamische Belastung KW - Nichtlineare Finite-Elemente-Methode KW - Monte-Carlo-Methode KW - reinforced concrete KW - dynamic behavior KW - stochastics KW - nonlinear finite elements KW - Monte Carlo method Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20040302-531 ER - TY - THES A1 - Wolff, Sebastian T1 - Implementation und Test eines Optimierungsverfahrens zur Loesung nichtlinearer Gleichungen der Strukturmechanik T1 - Implementation and Test of an Optimization Method Solving Nonlinear Equations of Structural Mechanics N2 - In displacement oriented methods of structural mechanics may static and dynamic equilibrium conditions lead to large coupled nonlinear systems of equations. In many cases they are solved iteratively utilizing derivatives of Newton's method. Alternatively, the equations may be expressed in terms of the Karush-Kuhn-Tucker conditions of an optimization problem and, therefore, may be solved using methods of mathematical programming. To begin with, the work deals with the fundamentals of the formulation as optimization problem. In particular, the requirements of material nonlinearity and contact situations are analyzed. Proximately, an algorithm is implemented which utilizes the usually sparse structure of the Hessian matrix, whereby particularly the convergence behaviour is analyzed and adjusted. The implementation was tested using examples from statics and dynamics of large systems. The results are verified considering the accuracy comparing alternative solutions (e.g. explicit methods). The potential areas of application is shown and the efficiency of the method is evaluated. N2 - In weggroeßenorientierten Verfahren der Strukturmechanik fuehren die statischen oder dynamischen Gleichgewichtsbedingungen auf große gekoppelte nichtlineare Gleichungssysteme. In vielen Faellen werden diese Gleichungssysteme iterativ auf der Grundlage des Newton'schen Naeherungsverfahrens gelost. Die Gleichungen koennen alternativ als Karush-Kuhn-Tucker-Bedingungen eines Optimierungsproblems aufgefasst, und daher mit Verfahren der mathematischen Optimierung geloest werden. Die Arbeit beschaeftigt sich zunaechst mit den Grundlagen der Problemformulierung als Optimierungsaufgabe, um dabei speziell die Anforderungen aus Werkstoffnichtlinearitaet und Kontakt untersuchen. In weiterer Folge ist ein Optimierungsalgorithmus innerhalb der Softwareumgebung SLang zu implementieren, der die in der Strukturmechanik typische schwach besetzte Struktur der Hessematrix ausnutzt. Dabei ist insbesondere das Konvergenzverhalten des Algorithmus zu untersuchen und moeglichst gut einzustellen. Die Implementation soll anhand von Beispielen aus der Statik und Dynamik großer Systeme getestet und die Resultate hinsichtlich ihrer Genauigkeit anhand von Alternativloesungen (z.B. aus expliziten Verfahren) verifiziert werden. Die potenziellen Anwendungsgebiete des entwickelten Algorithmus sind aufzuzeigen, und die Effizienz des Verfahrens ist zu bewerten. KW - Nichtlineare Optimierung KW - Nichtlineare Finite-Elemente-Methode KW - Kontaktmechanik KW - Kontaktkraft KW - Dynamik Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-7271 N1 - Der Volltext-Zugang wurde im Zusammenhang mit der Klärung urheberrechtlicher Fragen mit sofortiger Wirkung gesperrt. ER - TY - THES A1 - Grosse, Marco T1 - Zur numerischen Simulation des physikalisch nichtlinearen Kurzzeittragverhaltens von Nadelholz am Beispiel von Holz-Beton-Verbundkonstruktionen T1 - On the numerical simulation of the nonlinear short-time carrying behaviour of softwood with application to timber-concrete composite structures N2 - In der Arbeit wird ein räumliches Materialmodell für den anisotropen Werkstoff Holz vorgestellt. Dessen Leistungsfähigkeit wird durch Verifikationsrechnungen und die Simulation eigener Versuche aufgezeigt. In diesen Versuchen wurde das Tragverhalten spezieller Schubverbindungselemente der Brettstapel-Beton-Verbundbauweise untersucht. Die Kombination eines Brettstapels mit einer schubfest angeschlossenen Betonplatte ist eine vorteilhafte Möglichkeit, Schnittholz mit geringem Querschnitt effektiv in biegebeanspruchten Bauteilen einzusetzen. Es werden die Ergebnisse der experimentellen Untersuchungen zu den Schubverbindungselementen Flachstahlschloss und Nutverbindung vorgestellt. Diese zeichnen sich durch eine über die gesamte Plattenbreite kontinuierliche Übertragung der Schubkraft per Kontaktpressung aus. Vor allem in Brettstapel-Beton-Verbunddecken werden somit ein sehr hoher Verschiebungsmodul sowie eine eminente Tragfähigkeit erreicht. Um mit numerischen Strukturanalysen die in den Versuchen beobachteten Versagensmechanismen adäquat abbilden und realistische Prognosen für das Tragverhalten von Bauteilen oder Verbindungen treffen zu können, muss das physikalisch nichtlineare Verhalten aller beteiligter Baustoffe in die Berechnungen einbezogen werden. Im Rahmen der Dissertation wurde ein auf der Plastizitätstheorie basierendes Materialmodell für Nadelholz hergeleitet und in das FE-Programm ANSYS implementiert, welches die Mikrostruktur des Holzes als verschmierendes Ersatzkontinuum erfasst. Anhand des anatomischen Aufbaus des inhomogenen, anisotropen und porigen Werkstoffs werden die holzspezifischen Versagensmechanismen und die daraus abgeleiteten konstitutiven Beziehungen erläutert. Das ausgeprägt anisotrope Tragverhalten von Holz ist vor allem durch erstaunliche Duktilität bei Stauchung, sprödes Versagen bei Zug- und Schubbeanspruchung und enorme Festigkeitsunterschiede in den Wuchsrichtungen gekennzeichnet. Die Auswirkungen der größtenteils unabhängig voneinander auftretenden, mikromechanischen Versagensmechanismen auf die Spannungs-Verformungsbeziehungen wurden durch die Formulierung adäquater Ver- resp. Entfestigungsfunktionen in Abhängigkeit der Beanspruchungsmodi erfasst. Das dem Materialmodell zu Grunde liegende mehrflächige Fließkriterium berücksichtigt die Interaktion aller sechs Komponenten des räumlichen Spannungszustandes. Die durchgeführten Verifikations- und Simulationsberechnungen belegen, dass der erarbeitete Ansatz sowohl zur Bewertung des Tragvermögens als auch zur Beurteilung von Riss- bzw. Schädigungsursachen von Holzbauteilen eingesetzt werden kann. Die numerische Simulation eröffnet neue, bisher wenig beachtete Möglichkeiten zur Untersuchung komplexer Holzstrukturen sowie Anschlussdetails und wird sich auf Grund der Aussagekraft und Flexibilität auch im Ingenieurholzbau mehr und mehr gegenüber ausschließlich experimenteller Untersuchung durchsetzen. N2 - In the dissertation a spatial model for the anisotropic, porous material wood is presented. The efficiency of this numerical approach is pointed out by verifying computations and simulations of own experiments. In these tests the load carrying behaviour of special joining techniques for laminated timber concrete composite constructions have been examined. The combination of a laminated timber element with a shear resistant joined concrete slab is a profitable alternative for effectively using lumber with small cross section in bending stressed members. The results of the experimental investigations of flat-steel-lock and notch connection are presented. These are characterised by a load transmission via contact pressure continuously over the entire slab width. Particularly in laminated timber concrete composite ceilings a very stiff load-deflection relationship as well as an eminent load-carrying capacity is reached. To simulate the structural behaviour of members and to model there failure mechanisms it is necessary to take the mechanically nonlinear behaviour in the critical and post critical range of all involved materials into account. For this reason a constitutive material model for timber based on the plasticity theory was implemented in the finite element code ANSYS. The basic multisurface yield criterion considers the interaction of all six components of the spatial stress state. The proposal is furthermore based on the classic continuum mechanics. Therefore, a crack is not described discretely, but by its effect on the stress deformation behaviour. The numerical model reproduces the wood-specific anisotropic, load dependent strengths as well as predominantly independent proceeding of strain hardening and, respectively, softening. The conducted verifications and simulations prove, that the designed approach can be applied to the evaluation of the load-carrying behaviour as well as crack and damage causes of timber components. The numerical simulation opens new potentialities for investigation of complex wooden structures as well as connection details. Compared with expensive experimental studies this procedure will gain more significance due to its expressiveness and flexibility even in timber engineering. T3 - Schriftenreihe des Instituts für Konstruktiven Ingenieurbau - 7 KW - Holzbau KW - Verbundbauweise KW - Beton KW - Nichtlineare Finite-Elemente-Methode KW - Plastizitätstheorie KW - Numerische Mathematik KW - Simulation KW - Nichtlineare Kon KW - Holz-Beton-Verbund KW - HBV KW - Versagensmechanismen KW - Brettstapel KW - timber concrete composite KW - laminated timber Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20060215-7725 ER -