TY - JOUR A1 - Schwenke, Nicolas A1 - Söbke, Heinrich A1 - Kraft, Eckhard T1 - Potentials and Challenges of Chatbot-Supported Thesis Writing: An Autoethnography JF - Trends in Higher Education N2 - The release of the large language model-based chatbot ChatGPT 3.5 in November 2022 has brought considerable attention to the subject of artificial intelligence, not only to the public. From the perspective of higher education, ChatGPT challenges various learning and assessment formats as it significantly reduces the effectiveness of their learning and assessment functionalities. In particular, ChatGPT might be applied to formats that require learners to generate text, such as bachelor theses or student research papers. Accordingly, the research question arises to what extent writing of bachelor theses is still a valid learning and assessment format. Correspondingly, in this exploratory study, the first author was asked to write his bachelor’s thesis exploiting ChatGPT. For tracing the impact of ChatGPT methodically, an autoethnographic approach was used. First, all considerations on the potential use of ChatGPT were documented in logs, and second, all ChatGPT chats were logged. Both logs and chat histories were analyzed and are presented along with the recommendations for students regarding the use of ChatGPT suggested by a common framework. In conclusion, ChatGPT is beneficial for thesis writing during various activities, such as brainstorming, structuring, and text revision. However, there are limitations that arise, e.g., in referencing. Thus, ChatGPT requires continuous validation of the outcomes generated and thus fosters learning. Currently, ChatGPT is valued as a beneficial tool in thesis writing. However, writing a conclusive thesis still requires the learner’s meaningful engagement. Accordingly, writing a thesis is still a valid learning and assessment format. With further releases of ChatGPT, an increase in capabilities is to be expected, and the research question needs to be reevaluated from time to time. KW - Chatbot KW - Künstliche Intelligenz KW - Hochschulbildung KW - AIEd KW - artificial intelligence KW - academic writing KW - ChatGPT KW - education Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20231207-65016 UR - https://www.mdpi.com/2813-4346/2/4/37 VL - 2023 IS - Volume 2, issue 4 SP - 611 EP - 635 PB - MDPI CY - Basel ER - TY - JOUR A1 - Mehling, Simon A1 - Schnabel, Tobias A1 - Londong, Jörg T1 - Photocatalytic ozonation in an immersion rotary body reactor for the removal of micro-pollutants from the effluent of wastewater treatment plants JF - Water Science & Technology N2 - Carrier-bound titanium dioxide catalysts were used in a photocatalytic ozonation reactor for the degradation of micro-pollutants in real wastewater. A photocatalytic immersion rotary body reactor with a 36-cm disk diameter was used, and was irradiated using UV-A light-emitting diodes. The rotating disks were covered with catalysts based on stainless steel grids coated with titanium dioxide. The dosing of ozone was carried out through the liquid phase via an external enrichment and a supply system transverse to the flow direction. The influence of irradiation power and ozone dose on the degradation rate for photocatalytic ozonation was investigated. In addition, the performance of the individual processes photocatalysis and ozonation were studied. The degradation kinetics of the parent compounds were determined using liquid chromatography tandem mass spectrometry. First-order kinetics were determined for photocatalysis and photocatalytic ozonation. A maximum reaction rate of the reactor was determined, which could be achieved by both photocatalysis and photocatalytic ozonation. At a dosage of 0.4 mg /mg DOC, the maximum reaction rate could be achieved using 75% of the irradiation power used for sole photocatalysis, allowing increases in the energetic efficiency of photocatalytic wastewater treatment processes. The process of photocatalytic ozonation is suitable to remove a wide spectrum of micro-pollutants from wastewater. KW - Abwasserreinigung KW - Fotokatalyse KW - Mikroverunreinigungen KW - anthropogenic micro-pollutants KW - photocatalysis KW - photocatalytic ozonation KW - wastewater treatment KW - titan dioxide Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220209-45865 UR - https://iwaponline.com/wst/article/85/1/535/85800/Photocatalytic-ozonation-in-an-immersion-rotary VL - 2022 IS - volume 85, issue 1 SP - 535 EP - 548 PB - IWA Publishing CY - London ER - TY - JOUR A1 - Aicher, Andreas A1 - Börmel, Melanie A1 - Londong, Jörg A1 - Beier, Silvio T1 - Vertical green system for gray water treatment: Analysis of the VertiKKA-module in a field test JF - Frontiers in Environmental Science N2 - This work presents a modular Vertical Green System (VGS) for gray water treatment, developed at the Bauhaus-Universität Weimar. The concept was transformed into a field study with four modules built and tested with synthetic gray water. Each module set contains a small and larger module with the same treatment substrate and was fed hourly. A combination of lightweight structural material and biochar of agricultural residues and wood chips was used as the treatment substrate. In this article, we present the first 18 weeks of operation. Regarding the treatment efficiency, the parameters chemical oxygen demand (COD), total phosphorous (TP), ortho-phosphate (ortho-P), total bound nitrogen (TNb), ammonium nitrogen (NH4-N), and nitrate nitrogen (NO3-N) were analyzed and are presented in this work. The results of the modules with agricultural residues are promising. Up to 92% COD reduction is stated in the data. The phosphate and nitrogen fractions are reduced significantly in these modules. By contrast, the modules with wood chips reduce only 67% of the incoming COD and respectively less regarding phosphates and the nitrogen fraction. KW - Grauwasser KW - Abwassertechnologie KW - vertical green system KW - grey water treatment KW - urban heat island effect KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230124-48840 UR - https://www.frontiersin.org/articles/10.3389/fenvs.2022.976005/full VL - 2022 IS - Volume 10 (2022), article 976005 SP - 1 EP - 7 PB - Frontiers Media CY - Lausanne ER -