TY - CHAP A1 - Pastohr, Henry A1 - Kornadt, Oliver A1 - Gürlebeck, Klaus T1 - Numerische Untersuchungen zum Thermischen Strömungsverhalten im Aufwindkraftwerk T1 - Numerische und analytische Untersuchungen zum Strömungsverhalten im Aufwindkraftwerk N2 - Das Aufwindkraftwerk ist eine thermo- hydrodynamische Maschine zur Elektroenergiegewinnung, bestehend aus einem Treibhaus, einem Kamin und einer oder mehreren Turbinen. In dieser Studie wurden numerische Ergebnisse zum thermischen Strömungsverhalten in einem Aufwindkraftwerk unter der Berücksichtigung der Teilmodelle Erdboden, Kollektor, Atmosphäre, Umlenkung, Kamin und Turbine erhaltenden. Hierzu wurden die stationären Grundgleichungen der Thermofluiddynamik auf strukturierten, körperangepassten und rotationssymmetrischen Gittern unter Beachtung aller Rand- und Kopplungsbedingungen numerisch mit dem finite Volumenverfahren gelöst. Besonderes Augenmerk wurde dabei auf die Kalibrierung des Modells im Ruhezustand, auf die numerische Simulation, auf den Einfluss der Strahlung, auf die Betrachtung der Turbine, auf das Dichtemodell sowie auf den turbulenten Strömungszustand gelegt. Die erhaltenen Ergebnisse werden durch Approximationen 2. Ordnung, Gitterunabhängigkeit und durch einen sehr geringen Abbruchfehler charakterisiert. Für 4 verschiedene Einstrahlungen wurden die Verläufe von Temperatur und Geschwindigkeit im Aufwindkraftwerk erhalten. Zusätzlich sind für Vergleichszwecke der Massenstrom, der Temperaturhub, die Leistung an der Turbine und der Wirkungsgrad der Anlage bestimmt wurden. Aufbauend auf den Berechnungen in dieser Arbeit und den numerischen und analytischen Berechnungen in [1] können nun erweiterte Parameterstudien und instationäre Simulationen zum Aufwindkraftwerk durchgeführt werden. KW - Aufwindkraftwerk KW - Strömungsmechanik Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-3436 ER - TY - JOUR A1 - Völker, Conrad A1 - Mämpel, Silvio A1 - Kornadt, Oliver T1 - Measuring the human body’s micro‐climate using a thermal manikin JF - Indoor Air N2 - The human body is surrounded by a micro‐climate which results from its convective release of heat. In this study, the air temperature and flow velocity of this micro‐climate were measured in a climate chamber at various room temperatures, using a thermal manikin simulating the heat release of the human being. Different techniques (Particle Streak Tracking, thermography, anemometry, and thermistors) were used for measurement and visualization. The manikin surface temperature was adjusted to the particular indoor climate based on simulations with a thermoregulation model (UCBerkeley Thermal Comfort Model). We found that generally, the micro‐climate is thinner at the lower part of the torso, but expands going up. At the head, there is a relatively thick thermal layer, which results in an ascending plume above the head. However, the micro‐climate shape strongly depends not only on the body segment, but also on boundary conditions: the higher the temperature difference between the surface temperature of the manikin and the air temperature, the faster the air flow in the micro‐climate. Finally, convective heat transfer coefficients strongly increase with falling room temperature, while radiative heat transfer coefficients decrease. The type of body segment strongly influences the convective heat transfer coefficient, while only minimally influencing the radiative heat transfer coefficient. KW - Raumklima KW - Mikroklima KW - Wärmeübertragung KW - Strömungsmechanik KW - thermal manikin KW - climate chamber KW - micro climate KW - heat transfer coefficient KW - CFD KW - thermography Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20181025-38153 UR - https://onlinelibrary.wiley.com/doi/abs/10.1111/ina.12112 N1 - This is the peer reviewed version of the following article: "Measuring the human body’s micro‐climate using a thermal manikin", which has been published in final form at https://doi.org/10.1111/ina.12112. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. IS - 24, 6 SP - 567 EP - 579 ER -