TY - THES A1 - Msekh, Mohammed Abdulrazzak T1 - Phase Field Modeling for Fracture with Applications to Homogeneous and Heterogeneous Materials N2 - The thesis presents an implementation including different applications of a variational-based approach for gradient type standard dissipative solids. Phase field model for brittle fracture is an application of the variational-based framework for gradient type solids. This model allows the prediction of different crack topologies and states. Of significant concern is the application of theoretical and numerical formulation of the phase field modeling into the commercial finite element software Abaqus in 2D and 3D. The fully coupled incremental variational formulation of phase field method is implemented by using the UEL and UMAT subroutines of Abaqus. The phase field method considerably reduces the implementation complexity of fracture problems as it removes the need for numerical tracking of discontinuities in the displacement field that are characteristic of discrete crack methods. This is accomplished by replacing the sharp discontinuities with a scalar damage phase field representing the diffuse crack topology wherein the amount of diffusion is controlled by a regularization parameter. The nonlinear coupled system consisting of the linear momentum equation and a diffusion type equation governing the phase field evolution is solved simultaneously via a Newton- Raphson approach. Post-processing of simulation results to be used as visualization module is performed via an additional UMAT subroutine implemented in the standard Abaqus viewer. In the same context, we propose a simple yet effective algorithm to initiate and propagate cracks in 2D geometries which is independent of both particular constitutive laws and specific element technology and dimension. It consists of a localization limiter in the form of the screened Poisson equation with, optionally, local mesh refinement. A staggered scheme for standard equilibrium and screened Cauchy equations is used. The remeshing part of the algorithm consists of a sequence of mesh subdivision and element erosion steps. Element subdivision is based on edge split operations using a given constitutive quantity (either damage or void fraction). Mesh smoothing makes use of edge contraction as function of a given constitutive quantity such as the principal stress or void fraction. To assess the robustness and accuracy of this algorithm, we use both quasi-brittle benchmarks and ductile tests. Furthermore, we introduce a computational approach regarding mechanical loading in microscale on an inelastically deforming composite material. The nanocomposites material of fully exfoliated clay/epoxy is shaped to predict macroscopic elastic and fracture related material parameters based on their fine–scale features. Two different configurations of polymer nanocomposites material (PNCs) have been studied. These configurations are fully bonded PNCs and PNCs with an interphase zone formation between the matrix and the clay reinforcement. The representative volume element of PNCs specimens with different clay weight contents, different aspect ratios, and different interphase zone thicknesses are generated by adopting Python scripting. Different constitutive models are employed for the matrix, the clay platelets, and the interphase zones. The brittle fracture behavior of the epoxy matrix and the interphase zones material are modeled using the phase field approach, whereas the stiff silicate clay platelets of the composite are designated as a linear elastic material. The comprehensive study investigates the elastic and fracture behavior of PNCs composites, in addition to predict Young’s modulus, tensile strength, fracture toughness, surface energy dissipation, and cracks surface area in the composite for different material parameters, geometry, and interphase zones properties and thicknesses. T2 - Phasenfeldmodellierung für Brüche mit Anwendungen auf homogene und heterogene Materialien KW - Finite-Elemente-Methode KW - Phase field model KW - Fracture KW - Abaqus KW - Finite Element Model Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170615-32291 ER - TY - THES A1 - Herrmann, Annemarie T1 - Investigation of buckling behavior of carbon fiber-reinforced composite shell structures with openings N2 - Thin-walled cylindrical composite shell structures are often applied in aerospace for lighter and cheaper launcher transport system. These structures exhibit sensitivity to geometrical imperfection and are prone to buckling under axial compression. Today the design is based on NASA guidelines from the 1960’s [1] using a conservative lower bound curve embodying many experimental results of that time. It is well known that the advantages and different characteristics of composites as well as the evolution of manufacturing standards are not considered apporopriately in this outdated approach. The DESICOS project was initiated to provide new design guidelines regarding all the advantages of composites and allow further weight reduction of space structures by guaranteeing a more precise and robust design. Therefore it is necessary among other things to understand how a cutout with different dimensions affects the buckling load of a thin-walled cylindrical shell structure in combination with initial geometric imperfections. This work is intended to identify a ratio between the cutout characteristic dimension (in this case the cutout diameter) and the structure characteristic dimension (in this case the cylinder radius) that can be used to tell if the buckling structure is dominated by initial imperfections or is dominated by the cutout. KW - buckling KW - composite KW - Abaqus KW - cylindrical shell structures Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20130107-18129 UR - www.desicos.eu ER -