TY - CHAP A1 - Xie, Haiyan A1 - Issa, Raja A1 - O'Brien, William T1 - Structure of a Formal User Model for Construction Information Retrieval N2 - Information science researchers and developers have spent many years addressing the problem of retrieving the exact information needed and using it for analysis purposes. In informationseeking dialogues, the user, i.e. construction project manager or supplier, often asks questions about specific aspects of the tasks they want to perform. But most of the time it is difficult for the software systems to unambiguously understand their overall intentions. The existence of information tunnels (Tannenbaum 2002) aggravates this phenomenon. This study includes a detailed case study of the material management process in the construction industry. Based on this case study, the structure of a formal user model for information retrieval in construction management is proposed. This prototype user model will be incorporated into the system design for construction information management and retrieval. This information retrieval system is a user-centered product based on the development of a user configurable visitor mechanism for managing and retrieving project information without worrying too much about the underlying data structure of the database system. An executable UML model combined with OODB is used to reduce the ambiguity in the user's intentions and to achieve user satisfaction. KW - Bauwerk KW - Datenmanagement KW - Benutzeroberfläche Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1296 ER - TY - CHAP A1 - König, Markus A1 - Klinger, Axel A1 - Berkhahn, Volker T1 - Structural Correctness of Planning Processes in Building Engineering N2 - The planning of projects in building engineering is a complex process which is characterized by a dynamical composition and many modifications during the definition and execution time of processes. For a computer-aided and network-based cooperation a formal description of the planning process is necessary. In the research project “Relational Process Modelling in Cooperative Building Planning” a process model is described by three parts: an organizational structure with participants, a building structure with states and a process structure with activities. This research project is part of the priority program 1103 “Network-Based Cooperative Planning Processes in Structural Engineering” promoted by the German Research Foundation (DFG). Planning processes in civil engineering can be described by workflow graphs. The process structure describes the logical planning process and can be formally defined by a bipartite graph. This structure consists of activities, transitions and relationships between activities and transitions. In order to minimize errors at execution time of a planning process a consistent and structurally correct process model must be guaranteed. This contribution considers the concept and the algorithms for checking the consistency and the correctness of the process structure. KW - Baubetrieb KW - Computerunterstütztes Verfahren KW - Planungsprozess KW - Konsistenz Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1690 ER - TY - CHAP A1 - Perevalova, Julia A1 - Pahl, Peter Jan T1 - Structural and Functional Dependence of Objects in Data Bases N2 - Let the information of a civil engineering application be decomposed into objects of a given set of classes. Then the set of objects forms the data base of the application. The objects contain attributes and methods. Properties of the objects are stored in the attributes. Algorithms which the objects perform are implemented in the methods of the objects. If objects are modified by a user, the consistency of data in the base is destroyed. The data base must be modified in an update to restore its consistency. The sequence of the update operations is not arbitrary, but is governed by dependence between the objects. The situation can be described mathematically with graph theory. The available algorithms for the determination of the update sequence are not suitable when the data base is large. A new update algorithm for large data bases has been developed and is presented in this paper. KW - Baubetrieb KW - Computerunterstütztes Verfahren KW - Objektorientierung KW - Datenbank Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1683 ER - TY - JOUR A1 - Fink, Thomas T1 - Structural analysis, design and detailing using standard CAD software and standard building information model N2 - This paper describes the concept of a german commercial software package developed for the needs of structural engineers. Using a standard CAD software as user interface for all geometrical data and to save all important input data, there is a natural link to upcoming building information models. KW - Bauindustrie KW - CAD KW - Bauwerk KW - Modellierung Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2702 ER - TY - JOUR A1 - Romberg, Richard A1 - Niggl, Andreas A1 - van Treeck, Christoph T1 - Structural Analysis based on the Product Model Standard IFC N2 - In this paper we present a computer aided method supporting co-operation between different project partners, such as architects and engineers, on the basis of strictly three-dimensional models. The center of our software architecture is a product model, described by the Industry Foundation Classes (IFC) of the International Alliance for Interoperability (IAI). From this a geometrical model is extracted and automatically transferred to a computational model serving as a basis for various simulation tasks. In this paper the focus is set on the advantage of the fully three-dimensional structural analysis performed by p-version of the finite element analysis. Other simulation methods are discussed in a separate contribution of this Volume (Treeck 2004). The validity of this approach will be shown in a complex example. KW - Produktmodell KW - Simulation KW - Bautechnik KW - Statik KW - Standard Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2433 ER - TY - CHAP A1 - Changwan, Kim A1 - Haas, Carl A1 - Caldas, Carlos T1 - Spatial data acquisition, integration, and modeling for real-time project life-cycle applications N2 - Current methods for site modeling employs expensive laser range scanners that produce dense point clouds which require hours or days of post-processing to arrive at a finished model. While these methods produce very detailed models of the scanned scene, useful for obtaining as-built drawings of existing structures, the associated computational time burden precludes the methods from being used onsite for real-time decision-making. Moreover, in many project life-cycle applications, detailed models of objects are not needed. Results of earlier research conducted by the authors demonstrated novel, highly economical methods that reduce data acquisition time and the need for computationally intensive processing. These methods enable complete local area modeling in the order of a minute, and with sufficient accuracy for applications such as advanced equipment control, simple as-built site modeling, and real-time safety monitoring for construction equipment. This paper describes a research project that is investigating novel ways of acquiring, integrating, modeling, and analyzing project site spatial data that do not rely on dense, expensive laser scanning technology and that enable scalability and robustness for real-time, field deployment. Algorithms and methods for modeling objects of simple geometric shape (geometric primitives from a limited number of range points, as well as methods provide a foundation for further development required to address more complex site situations, especially if dynamic site information (motion of personnel and equipment). Field experiments are being conducted to establish performance parameters and validation for the proposed methods and models. Initial experimental work has demonstrated the feasibility of this approach. KW - Bauwerk KW - Datenmanagement KW - Echtzeitsystem KW - Lebenszyklus Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1280 ER - TY - CHAP A1 - Beyer, Hartmut T1 - Sondervorschläge und Alternativen mit allen Konsequenzen N2 - Der Verfasser begründet zunächst die aktive Erarbeitung von Sondervorschlägen und Alternativen. Im zweiten Abschnitt erfolgt die inhaltliche Strukturierung der Nebenangebote. Im Folgenden werden die Probleme beim Durchsetzen der Sondervorschläge bei der öffentlichen Hand und privaten Auftraggebern und als Alternative dazu das STRABAG teamconcept beschrieben. Im letzten Bereich wird die Verantwortung des Bauunternehmens unterstrichen und ein positives Resümee gezogen. KW - Baubetriebslehre KW - Ausschreibung KW - Öffentlicher Auftrag / Vergabe KW - Angebot KW - Angebotsbearbeitung Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-7207 ER - TY - CHAP A1 - Reinhardt, Jan A1 - Garrett, James H. A1 - Akinci, Burcu T1 - SiDaCoS: Product and Process Models on Construction Sites N2 - Site superintendents performing project management tasks on construction sites need to access project documents and need to collect information that they observe while inspecting the site. Often, information that is observed on a construction site needs to be integrated into electronic documents or project control systems. In the future, we expect integrated product and process models to be the medium for storing and handling construction project management information. Even though mobile computing devices today are already capable of storing and handling such integrated product and process data models, the user interaction with such large and complex models is difficult and not adequately addressed in the existing research. In this paper, we introduce a system that supports project management tasks on construction sites effectively and efficiently by making integrated product and process models accessible. In order to effectively and efficiently enter or access information, site superintendents need visual representations of the project data that are flexible with respect to the level of detail, the decomposition structure, and the type of visual representation. Based on this understanding of the information and data collection needs, we developed the navigational model framework and the application Site Data Collection System (SiDaCoS), which implements that framework. The navigational model framework allows site superintendents to create customized representations of information contained in a product and process model that correspond to their data access and data collection needs on site. KW - Mobile Computing KW - Funknetz KW - Baustelle KW - Controlling KW - data collection KW - construction management KW - product and process models KW - system KW - Work Face Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1156 ER - TY - CHAP A1 - Lehner, Karlheinz A1 - Hartmann, Dietrich T1 - Scenarios for the deployment of distributed engineering applications N2 - Although there are some good reasons to design engineering software as a stand-alone application for a single computer, there are also numerous possibilities for creating distributed engineering applications, in particular using the Internet. This paper presents some typical scenarios how engineering applications can benefit from including network capabilities. Also, some examples of Internet-based engineering applications are discussed to show how the concepts presented can be implemented. KW - Ingenieurbau KW - Verteiltes System KW - Planungsprozess KW - Modellierung KW - Internet Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-1476 ER - TY - JOUR A1 - Likhitruangsilp, Veerasak A1 - Ioannou, Photios T1 - Risk-sensitive Markov Decision Process for Underground Construction Planning and Estimating N2 - This paper presents an application of dynamic decision making under uncertainty in planning and estimating underground construction. The application of the proposed methodology is illustrated by its application to an actual tunneling project—The Hanging Lake Tunnel Project in Colorado, USA. To encompass the typical risks in underground construction, tunneling decisions are structured as a risk-sensitive Markov decision process that reflects the decision process faced by a contractor in each tunneling round. This decision process consists of five basic components: (1) decision stages (locations), (2) system states (ground classes and tunneling methods), (3) alternatives (tunneling methods), (4) ground class transition probabilities, and (5) tunneling cost structure. The paper also presents concepts related to risk preference that are necessary to model the contractor’s risk attitude, including the lottery concept, utility theory, and the delta property. The optimality equation is formulated, the model components are defined, and the model is solved by stochastic dynamic programming. The main results are the optimal construction plans and risk-adjusted project costs, both of which reflect the dynamics of subsurface construction, the uncertainty about geologic variability as a function of available information, and the contractor’s risk preference. KW - Mehragentensystem KW - Lernendes System KW - Tunnel KW - Markowschke KW - Kette Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20111215-2247 ER -