TY - CHAP A1 - Meier, Jörg A1 - Schanz, Tom ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - Benchmarking of Optimization Algorithms T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - In this paper, we present an empirical approach for objective and quantitative benchmarking of optimization algorithms with respect to characteristics induced by the forward calculation. Due to the professional background of the authors, this benchmarking strategy is illustrated on a selection of search methods in regard to expected characteristics of geotechnical parameter back calculation problems. Starting from brief introduction into the approach employed, a strategy for optimization algorithm benchmarking is introduced. The benchmarking utilizes statistical tests carried out on well-known test functions superposed with perturbations, both chosen to mimic objective function topologies found for geotechnical objective function topologies. Here, the moved axis parallel hyper-ellipsoid test function and the generalized Ackley test function in conjunction with an adjustable quantity of objective function topology roughness and fraction of failing forward calculations is analyzed. In total, results for 5 optimization algorithms are presented, compared and discussed. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28134 SN - 1611-4086 ER - TY - CHAP A1 - Hölter, Raoul A1 - Mahmoudi, Elham A1 - Schanz, Tom ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - OPTIMAL SENSOR LOCATION FOR PARAMETER IDENTIFICATION IN SOFT CLAY T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - Performing parameter identification prior to numerical simulation is an essential task in geotechnical engineering. However, it has to be kept in mind that the accuracy of the obtained parameter is closely related to the chosen experimental setup, such as the number of sensors as well as their location. A well considered position of sensors can increase the quality of the measurement and to reduce the number of monitoring points. This Paper illustrates this concept by means of a loading device that is used to identify the stiffness and permeability of soft clays. With an initial setup of the measurement devices the pore water pressure and the vertical displacements are recorded and used to identify the afore mentioned parameters. Starting from these identified parameters, the optimal measurement setup is investigated with a method based on global sensitivity analysis. This method shows an optimal sensor location assuming three sensors for each measured quantity, and the results are discussed. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28008 SN - 1611-4086 ER -