TY - CHAP ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar T1 - Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen : 20. bis 22.7. 2015, Bauhaus-Universität Weimar T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - The 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 20th till 22nd July 2015. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference. We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference! KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren KW - Building Information Modeling KW - Optimization in engineering applications KW - Data, information and knowledge modeling in civil engineering KW - Function theoretic methods and PDE in engineering sciences KW - Mathematical methods for (robotics and) computer vision KW - Numerical modeling in engineering Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20150828-24515 SN - 1611-4086 ER - TY - CHAP A1 - Al-Yasiri, Zainab A1 - Gürlebeck, Klaus ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - ON BOUNDARY VALUE PROBLEMS FOR P-LAPLACE AND P-DIRAC EQUATIONS T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - The p-Laplace equation is a nonlinear generalization of the Laplace equation. This generalization is often used as a model problem for special types of nonlinearities. The p-Laplace equation can be seen as a bridge between very general nonlinear equations and the linear Laplace equation. The aim of this paper is to solve the p-Laplace equation for 2 < p < 3 and to find strong solutions. The idea is to apply a hypercomplex integral operator and spatial function theoretic methods to transform the p-Laplace equation into the p-Dirac equation. This equation will be solved iteratively by using a fixed point theorem. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27928 SN - 1611-4086 ER - TY - CHAP A1 - Alalade, Muyiwa A1 - Kafle, Binod A1 - Wuttke, Frank A1 - Lahmer, Tom ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - CALIBRATION OF CYCLIC CONSTITUTIVE MODELS FOR SOILS BY OSCILLATING FUNCTIONS T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - In order to minimize the probability of foundation failure resulting from cyclic action on structures, researchers have developed various constitutive models to simulate the foundation response and soil interaction as a result of these complex cyclic loads. The efficiency and effectiveness of these model is majorly influenced by the cyclic constitutive parameters. Although a lot of research is being carried out on these relatively new models, little or no details exist in literature about the model based identification of the cyclic constitutive parameters. This could be attributed to the difficulties and complexities of the inverse modeling of such complex phenomena. A variety of optimization strategies are available for the solution of the sum of least-squares problems as usually done in the field of model calibration. However for the back analysis (calibration) of the soil response to oscillatory load functions, this paper gives insight into the model calibration challenges and also puts forward a method for the inverse modeling of cyclic loaded foundation response such that high quality solutions are obtained with minimum computational effort. Therefore model responses are produced which adequately describes what would otherwise be experienced in the laboratory or field. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27932 SN - 1611-4086 ER - TY - CHAP A1 - Almamou, Abd Albasset A1 - Gebhardt, Thomas A1 - Bock, Sebastian A1 - Hildebrand, Jörg A1 - Schwarz, Willfried ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - QUALITY CONTROL OF CONSTRUCTED MODELS USING 3D POINT CLOUD T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - Over the last decade, the technology of constructing buildings has been dramatically developed especially with the huge growth of CAD tools that help in modeling buildings, bridges, roads and other construction objects. Often quality control and size accuracy in the factory or on construction site are based on manual measurements of discrete points. These measured points of the realized object or a part of it will be compared with the points of the corresponding CAD model to see whether and where the construction element fits into the respective CAD model. This process is very complicated and difficult even when using modern measuring technology. This is due to the complicated shape of the components, the large amount of manually detected measured data and the high cost of manual processing of measured values. However, by using a modern 3D scanner one gets information of the whole constructed object and one can make a complete comparison against the CAD model. It gives an idea about quality of objects on the whole. In this paper, we present a case study of controlling the quality of measurement during the constructing phase of a steel bridge by using 3D point cloud technology. Preliminary results show that an early detection of mismatching between real element and CAD model could save a lot of time, efforts and obviously expenses. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27944 SN - 1611-4086 ER - TY - JOUR A1 - Anitescu, Cosmin A1 - Jia, Yue A1 - Zhang, Yongjie A1 - Rabczuk, Timon T1 - An isogeometric collocation method using superconvergent points JF - Computer Methods in Applied Mechanics and Engineer-ing N2 - An isogeometric collocation method using superconvergent points KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 1073 EP - 1097 ER - TY - JOUR A1 - Arash, Behrouz A1 - Rabczuk, Timon A1 - Jiang, Jin-Wu T1 - Nanoresonators and their applications: a state of the art review JF - Applied Physics Reviews N2 - Nanoresonators and their applications: a state of the art review KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 ER - TY - JOUR A1 - Areias, Pedro A1 - Rabczuk, Timon A1 - Cesar de Sa, J.M. A1 - Garcao, J.E. T1 - Finite strain quadrilateral shell using least-squares _t of relative Lagrangian in-plane strains JF - Finite Elements in Analysis and Design N2 - Finite strain quadrilateral shell using least-squares _t of relative Lagrangian in-plane strains KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 26 EP - 40 ER - TY - JOUR A1 - Areias, Pedro A1 - Rabczuk, Timon A1 - Cesar de Sa, J.M. A1 - Jorge, R.N. T1 - A semi-implicit _nite strain shell algorithm using in-plane strains based on least-squares JF - Computational Mechanics N2 - A semi-implicit _nite strain shell algorithm using in-plane strains based on least-squares KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 ER - TY - JOUR A1 - Areias, Pedro A1 - Rabczuk, Timon A1 - Queiros de Melo, F. J. M. A1 - Cesar de Sa, J.M. T1 - Coulomb frictional contact by explicit projection in the cone for _nite displacement quasi-static problems JF - Computational Mechanics N2 - Coulomb frictional contact by explicit projection in the cone for _nite displacement quasi-static problems KW - Angewandte Mathematik KW - Strukturmechanik Y1 - 2015 SP - 57 EP - 72 ER - TY - CHAP A1 - Bargstädt, Hans-Joachim A1 - Tarigan, Rina Sari ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - RULE BASED EXPANSION OF STANDARD CONSTRUCTION PROCESSES T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - The paper introduces a systematic construction management approach, supporting expansion of a specified construction process, both automatically and semi-automatically. Throughout the whole design process, many requirements must be taken into account in order to fulfil demands defined by clients. In implementing those demands into a design concept up to the execution plan, constraints such as site conditions, building code, and legal framework are to be considered. However, complete information, which is needed to make a sound decision, is not yet acquired in the early phase. Decisions are traditionally taken based on experience and assumptions. Due to a vast number of appropriate available solutions, particularly in building projects, it is necessary to make those decisions traceable. This is important in order to be able to reconstruct considerations and assumptions taken, should there be any changes in the future project’s objectives. The research will be carried out by means of building information modelling, where rules deriving from standard logics of construction management knowledge will be applied. The knowledge comprises a comprehensive interaction amongst bidding process, cost-estimation, construction site preparation as well as specific project logistics – which are usually still separately considered. By means of these rules, favourable decision taking regarding prefabrication and in-situ implementation can be justified. Modifications depending on the available information within current design stage will consistently be traceable. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28229 SN - 1611-4086 ER -