TY - CHAP A1 - Scheiber, Frank ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - ROBUSTNESS IN CIVIL ENGINEERING - INFLUENCES OF THE STRUCTURAL MODEL ON THE EVALUATION OF THE STRUCTURAL ROBUSTNESS T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - The topic of structural robustness is covered extensively in current literature in structural engineering. A few evaluation methods already exist. Since these methods are based on different evaluation approaches, the comparison is difficult. But all the approaches have one in common, they need a structural model which represents the structure to be evaluated. As the structural model is the basis of the robustness evaluation, there is the question if the quality of the chosen structural model is influencing the estimation of the structural robustness index. This paper shows what robustness in structural engineering means and gives an overview of existing assessment methods. One is the reliability based robustness index, which uses the reliability indices of a intact and a damaged structure. The second one is the risk based robustness index, which estimates the structural robustness by the usage of direct and indirect risk. The paper describes how these approaches for the evaluation of structural robustness works and which parameters will be used. Since both approaches needs a structural model for the estimation of the structural behavior and the probability of failure, it is necessary to think about the quality of the chosen structural model. Nevertheless, the chosen model has to represent the structure, the input factors and reflect the damages which occur. On the example of two different model qualities, it will be shown, that the model choice is really influencing the quality of the robustness index. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27845 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Nechytailo, Oleksandr A1 - Horokhov, Yevgen A1 - Kushchenko, Vladimir ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - ANALYSIS OF THE MODE OF DEFORMATION OF THE SUB-PULLEY STRUCTURES ON SHAFT SLOPING HEADGEAR STRUCTURES T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - A numerical analysis of the mode of deformation of the main load-bearing components of a typical frame sloping shaft headgear was performed. The analysis was done by a design model consisting of plane and solid finite elements, which were modeled in the program «LIRA». Due to the numerical results, the regularities of local stress distribution under a guide pulley bearing were revealed and parameters of a plane stress under both emergency and normal working loads were determined. In the numerical simulation, the guidelines to improve the construction of the joints of guide pulleys resting on sub-pulley frame-type structures were established. Overall, the results obtained are the basis for improving the engineering procedures of designing steel structures of shaft sloping headgear. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27826 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Lahmer, Tom A1 - Ghorashi, Seyed Shahram ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - XFEM-BASED CRACK IDENTIFICATION APPLYING REGULARIZING METHODS IN A MULTILEVEL APPROACH T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - Many structures in different engineering applications suffer from cracking. In order to make reliable prognosis about the serviceability of those structures it is of utmost importance to identify cracks as precisely as possible by non-destructive testing. A novel approach (XIGA), which combines the Isogeometric Analysis (IGA) and the Extended Finite Element Method (XFEM) is used for the forward problem, namely the analysis of a cracked material, see [1]. Applying the NURBS (Non-Uniform Rational B-Spline) based approach from IGA together with the XFEM allows to describe effectively arbitrarily shaped cracks and avoids the necessity of remeshing during the crack identification problem. We want to exploit these advantages for the inverse problem of detecting existing cracks by non-destructive testing, see e.g. [2]. The quality of the reconstructed cracks however depends on two major issues, namely the quality of the measured data (measurement error) and the discretization of the crack model. The first one will be taken into account by applying regularizing methods with a posteriori stopping criteria. The second one is critical in the sense that too few degrees of freedom, i.e. the number of control points of the NURBS, do not allow for a precise description of the crack. An increased number of control points, however, increases the number of unknowns in the inverse analysis and intensifies the ill-posedness. The trade-off between accuracy and stability is aimed to be found by applying an inverse multilevel algorithm [3, 4] where the identification is started with short knot vectors which successively will be enlarged during the identification process. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27717 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Keitel, Holger ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - QUANTIFYING THE QUALITY OF PARTIAL MODEL COUPLING AND ITS EFFECT ON THE SIMULATED STRUCTURAL BEHAVIOR T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - The process of analysis and design in structural engineering requires the consideration of different partial models, for example loading, structural materials, structural elements, and analysis types. The various partial models are combined by coupling several of their components. Due to the large number of available partial models describing similar phenomena, many different model combinations are possible to simulate the same aspects of a structure. The challenging task of an engineer is to select a model combination that ensures a sufficient, reliable prognosis. In order to achieve this reliable prognosis of the overall structural behavior, a high individual quality of the partial models and an adequate coupling of the partial models is required. Several methodologies have been proposed to evaluate the quality of partial models for their intended application, but a detailed study of the coupling quality is still lacking. This paper proposes a new approach to assess the coupling quality of partial models in a quantitative manner. The approach is based on the consistency of the coupled data and applies for uni- and bidirectional coupled partial models. Furthermore, the influence of the coupling quality on the output quantities of the partial models is considered. The functionality of the algorithm and the effect of the coupling quality are demonstrated using an example of coupled partial models in structural engineering. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27689 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Kulchytskyy, Artem A1 - Horokhov, Yevgen A1 - Gubanov, Vadim A1 - Golikov, Alexandr ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - THE INFLUENCE OF THE LOCAL CONCAVITY ON THE FUNCTIONING OF BEARING SHELL OF HIGH-RISE CONSTRUCTION T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - Areas with various defects and damages, which reduce carrying capacity, were examined in a study of metal chimneys. In this work, the influence of the local dimples on the function of metal chimneys was considered. Modeling tasks were completed in the software packages LIRA and ANSYS. Parameters were identified, which characterize the local dimples, and a numerical study of the influence of local dimples on the stress-strain state of shells of metal chimneys was conducted. A distribution field of circular and meridional tension was analyzed in a researched area. Zones of influence of dimples on the bearing cover of metal chimneys were investigated. The bearing capacities of high-rise structures with various dimple geometries and various cover parameters were determined with respect to specified areas of the trunk. Dependent relationships are represented graphically for the decrease in bearing capacity of a cover with respect to dimples. Diameter and thickness of covers of metal chimneys were constructed according to the resulting data. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27701 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Wudtke, Idna ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - CONSTITUTIVE MODELING OF CRYSTALLINE MATERIALS WITH TEXTURE CHARACTERISTICS T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - The analysis of the response of complex structural systems requires the description of the material constitutive relations by means of an appropriate material model. The level of abstraction of such model may strongly affect the quality of the prognosis of the whole structure. In context to this fact, it is necessary to describe the material in a convenient sense as exact but as simple as possible. All material phenomena of crystalline materials e.g. steel, affecting the behavior of the structure, rely on physical effects which are interacting over spatial scales from subatomic to macroscopic range. Nevertheless, if the material is microscopically heterogenic, it might be appropriate to use phenomenological models for the purpose of civil engineering. Although constantly applied, these models are insufficient for steel materials with microscopic characteristics such as texture, typically occurring in hot rolled steel members or heat affected zones of welded joints. Hence, texture is manifested in crystalline materials as a regular crystallographic structure and crystallite orientation, influencing macroscopic material properties. The analysis of structural response of material with texture (e.g. rolled steel or heat affected zone of a welded joint) obliges the extension of the phenomenological material description of macroscopic scale by means of microscopic information. This paper introduces an enrichment approach for material models based on a hierarchical multiscale methodology. This has been done by describing the grain texture on a mesoscopic scale and coupling it with macroscopic constitutive relations by means of homogenization. Due to a variety of available homogenization methods, the question of an assessment of coupling quality arises. The applicability of the method and the effect of the coupling method on the reliability of the response are presented on an example. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27910 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - THES A1 - Karaki, Ghada T1 - Assessment of coupled models of bridges considering time-dependent vehicular loading N2 - Bridge vibration due to traffic loading has been a subject of extensive research in the last decades. The focus of such research has been to develop solution algorithms and investigate responses or behaviors of interest. However, proving the quality and reliability of the model output in structural engineering has become a topic of increasing importance. Therefore, this study is an attempt to extend concepts of uncertainty and sensitivity analyses to assess the dynamic response of a coupled model in bridge engineering considering time-dependent vehicular loading. A setting for the sensitivity analysis is proposed, which enables performing the sensitivity analysis considering random stochastic processes. The classical and proposed sensitivity settings are used to identify the relevant input parameters and models that have the most influence on the variance of the dynamic response. The sensitivity analysis exercises the model itself and extracts results without the need for measurements or reference solutions; however, it does not offer a means of ranking the coupled models studied. Therefore, concepts of total uncertainty are employed to rank the coupled models studied according to their fitness in describing the dynamic problem. The proposed procedures are applied in two examples to assess the output of coupled subsystems and coupled partial models in bridge engineering considering the passage of a heavy vehicle at various speeds. N2 - Brückenschwingungen infolge von Verkehrslasten sind seit mehreren Jahrzehnten Gegenstand intensiver Forschung. Im Fokus stand hierbei im Besonderen die Entwicklung von Lösungsalgorithmen zur Ermittlung des dynamischen Bauwerkverhaltens. Begleitet ist diese Entwicklung von der Frage nach der Qualität und Zuverlässigkeit dieser Modelle für den Gebrauch im konstruktiven Ingenieurbau. In diesem Zusammenhang werden in der vorliegenden Arbeit Konzepte der Unsicherheits- und Sensitivitätsanalyse erweitert, um das dynamische Bauwerkverhalten unter Berücksichtigung transienter Fahrzeuglasten bei gekoppelten Modellen des Brückenbaus zu bewerten. Bestehende Sensitivitätsanalysen werden ergänzt, um diese auch unter Berücksichtigung von stochastischen Prozessen durchführen zu können. Die klassische und die erweiterte Methode werden angewandt, um relevante Eingangsparameter sowie Partialmodelle mit wesentlichem Einfluss auf die Varianz der dynamischen Strukturantwort zu identifizieren. Die mit Hilfe der Sensitivitätsanalyse ermittelbaren Kennzahlen können ohne Bezug zu einer Referenzlösung in die Modellbewertung einfließen, allerdings ist es nicht möglich, die Modelle hinsichtlich der realitätsnahen Abbildung des dynamischen Problems zu bewerten. Um dies zu ermöglichen, wurden Konzepte der Gesamtunsicherheit verwendet. Die vorgestellten Methoden wurden auf zwei Beispiele angewandt, um die Ergebnisse von gekoppelten Subsystemen und gekoppelten Partialmodellen des Brückenbaus zu evaluieren. Hierbei handelt es sich um die Überfahrt von schweren Fahrzeugen mit verschiedenen Geschwindigkeiten. T3 - Schriftenreihe des DFG Graduiertenkollegs 1462 Modellqualitäten // Graduiertenkolleg Modellqualitäten - 5 KW - Ingenieurbau KW - bridge-vehicle interaction KW - random vibrations KW - sensitivity and uncertainty analysis Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20120402-15894 ER - TY - THES A1 - Nikulla, Susanne T1 - Quality assessment of kinematical models by means of global and goal-oriented error estimation techniques T1 - Anwendung globaler und zielorientierter Fehlerschätzer zur Beurteilung der Notwendigkeit einer geometrisch nicht-linearen Berechnung N2 - Methods for model quality assessment are aiming to find the most appropriate model with respect to accuracy and computational effort for a structural system under investigation. Model error estimation techniques can be applied for this purpose when kinematical models are investigated. They are counted among the class of white box models, which means that the model hierarchy and therewith the best model is known. This thesis gives an overview of discretisation error estimators. Deduced from these, methods for model error estimation are presented. Their general goal is to make a prediction of the inaccuracies that are introduced using the simpler model without knowing the solution of a more complex model. This information can be used to steer an adaptive process. Techniques for linear and non-linear problems as well as global and goal-oriented errors are introduced. The estimation of the error in local quantities is realised by solving a dual problem, which serves as a weight for the primal error. So far, such techniques have mainly been applied in material modelling and for dimensional adaptivity. Within the scope of this thesis, available model error estimators are adapted for an application to kinematical models. Their applicability is tested regarding the question of whether a geometrical non-linear calculation is necessary or not. The analysis is limited to non-linear estimators due to the structure of the underlying differential equations. These methods often involve simplification, e.g linearisations. It is investigated to which extent such assumptions lead to meaningful results, when applied to kinematical models. N2 - Die verschiedenen Methoden zur Bewertung der Modellqualität haben ein Ziel: Das passende Modell in Bezug auf Genauigkeit und Berechnungsaufwand für eine konkrete Struktur zu finden. Steht dabei die Untersuchung eines Kinematik-Modells im Vordergrund, können Modellfehlerschätzer zur Modellbewertung verwendet werden. Dieser Zusammenhang gilt, solange es sich um mechanisch motivierte Modelle handelt, bei denen die Modellhierarchie und damit das beste Modell bekannt sind. Die vorliegende Arbeit beschreibt den Weg von den einfachen Fehlerschätzern für Diskretisierungsfehler bis zu den daraus abgeleiteten Modellfehlerschätzern. Das Ziel der letztgenannten besteht in der Vorhersage von Ungenauigkeit, die durch die Verwendung eines vereinfachten anstatt des komplexen Modells entstehen. Aus den gewonnenen Informationen wird eine adaptive Modellanpassung entwickelt. Die Methoden lassen sich dabei nach verschiedenen Kriterien unterscheiden. Diese diffenzieren zwischen den verschiedenen Anwendungsbereichen, zwischen linearen und nicht-linearen Modellen sowie zwischen globalen und ziel-orientierten Fehlern. Die bislang in der Literatur hauptsächlich zu findenden Anwendungsgebiete sind die Materialmodellierung und die Dimensionsadaptivität. Im Rahmen dieser Arbeit werden nun die bekannten Methoden zur Abschätzung des Modellfehlers auf kinematische Modelle erweitert. Zudem wird die Frage, ob eine geometrisch nicht-lineare Berechnung notwendig ist oder nicht, untersucht. Aufgrund der Struktur der zugrunde liegenden Differentialgleichungen beschränken sich die Analysen auf nicht-lineare Fehlerschätzer. Da diese Methoden oft auf Vereinfachungen wie z.B. die Linearisierung der Grundgleichungen zurückgreifen, wird in der vorliegenden Arbeit untersucht, inwieweit diese Annahmen zu verwertbaren Ergebnissen führen. T3 - Schriftenreihe des DFG Graduiertenkollegs 1462 Modellqualitäten // Graduiertenkolleg Modellqualitäten - 4 KW - Model quality, Model error estimation, Kinematical model, Geometric non-linearity, Finite Element method KW - Modellqualität, Modellfehlerschätzer, Geometrisch nicht-lineare Berechnung, Kinematik Modell, Finite Elemente Methode Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20120419-16161 PB - Verlag der Bauhaus-Universität Weimar CY - Weimar ER - TY - CHAP A1 - Abbas, Tajammal A1 - Morgenthal, Guido T1 - Model combinations for assessing the flutter stability of suspension bridges T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - Long-span cable supported bridges are prone to aerodynamic instabilities caused by wind and this phenomenon is usually a major design criterion. If the wind speed exceeds the critical flutter speed of the bridge, this constitutes an Ultimate Limit State. The prediction of the flutter boundary therefore requires accurate and robust models. This paper aims at studying various combinations of models to predict the flutter phenomenon. Since flutter is a coupling of aerodynamic forcing with a structural dynamics problem, different types and classes of models can be combined to study the interaction. Here, both numerical approaches and analytical models are utilised and coupled in different ways to assess the prediction quality of the hybrid model. Models for aerodynamic forces employed are the analytical Theodorsen expressions for the motion-enduced aerodynamic forces of a flat plate and Scanlan derivatives as a Meta model. Further, Computational Fluid Dynamics (CFD) simulations using the Vortex Particle Method (VPM) were used to cover numerical models. The structural representations were dimensionally reduced to two degree of freedom section models calibrated from global models as well as a fully three-dimensional Finite Element (FE) model. A two degree of freedom system was analysed analytically as well as numerically. Generally, all models were able to predict the flutter phenomenon and relatively close agreement was found for the particular bridge. In conclusion, the model choice for a given practical analysis scenario will be discussed in the context of the analysis findings. KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren KW - Angewandte Informatik Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170306-27574 SN - 1611-4086 ER - TY - CHAP A1 - De Aguinaga, José Guillermo ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - INFLUENCE OF DIFFERENT DATA TYPES FOR THE ESTIMATION OF HYDROMECHANICAL PARAMETERS FOR A WATER RETAINING DAM USING SYNTHETIC DATA T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - The present research analyses the error on prediction obtained under different data availability scenarios to determine which measurements contribute to an improvement of model prognosis and which not. A fully coupled 2D hydromechanical model of a water retaining dam is taken as an example. Here, the mean effective stress in the porous skeleton is reduced due to an increase in pore water pressure under drawdown conditions. Relevant model parameters are ranked by scaled sensitivities, Particle Swarm Optimization is applied to determine the optimal parameter values and model validation is performed to determine the magnitude of error forecast. We compare the predictions of the optimized models with results from a forward run of the reference model to obtain actual prediction errors. The analyses presented here were performed to 31 data sets of 100 observations of varying data types. Calibrating with multiple information types instead of only one sort, brings better calibration results and improvement in model prognosis. However, when using several types of information the number of observations have to be increased to be able to cover a representative part of the model domain; otherwise a compromise between data availability and domain coverage prove best. Which type of information for calibration contributes to the best prognoses, could not be determined in advance. For the error in model prognosis does not depends on the error in calibration, but on the parameter error, which unfortunately can not be determined in reality since we do not know its real value. Excellent calibration fits with parameters’ values near the limits of reasonable physical values, provided the highest prognosis errors. While models which included excess pore pressure values for calibration provided the best prognosis, independent of the calibration fit. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170306-27607 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER -