TY - THES A1 - Riehmann, Patrick T1 - Advanced Visual Interfaces for Informed Decision-Making N2 - This thesis presents new interactive visualization techniques and systems intended to support users with real-world decisions such as selecting a product from a large variety of similar offerings, finding appropriate wording as a non-native speaker, and assessing an alleged case of plagiarism. The Product Explorer is a significantly improved interactive Parallel Coordinates display for facilitating the product selection process in cases where many attributes and numerous alternatives have to be considered. A novel visual representation for categorical and ordered data with only few occurring values, the so-called extended areas, in combination with cubic curves for connecting the parallel axes, are crucial for providing an effective overview of the entire dataset and to facilitate the tracing of individual products. The visual query interface supports users in quickly narrowing down the product search to a small subset or even a single product. The scalability of the approach towards a large number of attributes and products is enhanced by the possibility of setting some constraints on final attributes and, therefore, reducing the number of considered attributes and data items. Furthermore, an attribute repository allows users to focus on the most important attributes at first and to bring in additional criteria for product selection later in the decision process. A user study confirmed that the Product Explorer is indeed an excellent tool for its intended purpose for casual users. The Wordgraph is a layered graph visualization for the interactive exploration of search results for complex keywords-in-context queries. The system relies on the Netspeak web service and is designed to support non-native speakers in finding customary phrases. Uncertainties about the commonness of phrases are expressed with the help of wildcard-based queries. The visualization presents the alternatives for the wildcards in a multi-column layout: one column per wildcard with the other query fragments in between. The Wordgraph visualization displays the sorted results for all wildcards at once by appropriately arranging the words of each column. A user study confirmed that this is a significant advantage over simple textual result lists. Furthermore, visual interfaces to filter, navigate, and expand the graph allow interactive refinement and expansion of wildcard-containing queries. Furthermore, this thesis presents an advanced visual analysis tool for assessing and presenting alleged cases of plagiarism and provides a three-level approach for exploring the so-called finding spots in their context. The overview shows the relationship of the entire suspicious document to the set of source documents. An intermediate glyph-based view reveals the structural and textual differences and similarities of a set of finding spots and their corresponding source text fragments. Eventually, the actual fragments of the finding spot can be shown in a side-by-side view with a novel structured wrapping of both the source, as well as the suspicious text. The three different levels of detail are tied together by versatile navigation and selection operations. Reviews with plagiarism experts confirm that this tool can effectively support their workflow and provides a significant improvement over existing static visualizations for assessing and presenting plagiarism cases. The three main contributions of this research have a lot in common aside from being carefully designed and scientifically grounded solutions to real-world decision problems. The first two visualizations facilitate the decision for a single possibility out of many alternatives, whereas the latter ones deal with text at varying levels of detail. All visual representations are clearly structured based on horizontal and vertical layers contained in a single view and they all employ edges for depicting the most important relationships between attributes, words, or different levels of detail. A detailed analysis considering the context of the established decision-making literature reveals that important steps of common decision models are well-supported by the three visualization systems presented in this thesis. KW - Informatik KW - Visualisierung KW - Information Visualization KW - Preferential Choice KW - Text-based Visualization KW - Plagiarism Visualization KW - Product Search Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20150907-24542 PB - Patrick Riehmann ER - TY - THES A1 - Budarapu, Pattabhi Ramaiah T1 - Adaptive multiscale methods for fracture T1 - Adaptive Multiskalen-Methoden zur Modellierung von Materialversagen N2 - One major research focus in the Material Science and Engineering Community in the past decade has been to obtain a more fundamental understanding on the phenomenon 'material failure'. Such an understanding is critical for engineers and scientists developing new materials with higher strength and toughness, developing robust designs against failure, or for those concerned with an accurate estimate of a component's design life. Defects like cracks and dislocations evolve at nano scales and influence the macroscopic properties such as strength, toughness and ductility of a material. In engineering applications, the global response of the system is often governed by the behaviour at the smaller length scales. Hence, the sub-scale behaviour must be computed accurately for good predictions of the full scale behaviour. Molecular Dynamics (MD) simulations promise to reveal the fundamental mechanics of material failure by modeling the atom to atom interactions. Since the atomistic dimensions are of the order of Angstroms ( A), approximately 85 billion atoms are required to model a 1 micro- m^3 volume of Copper. Therefore, pure atomistic models are prohibitively expensive with everyday engineering computations involving macroscopic cracks and shear bands, which are much larger than the atomistic length and time scales. To reduce the computational effort, multiscale methods are required, which are able to couple a continuum description of the structure with an atomistic description. In such paradigms, cracks and dislocations are explicitly modeled at the atomistic scale, whilst a self-consistent continuum model elsewhere. Many multiscale methods for fracture are developed for "fictitious" materials based on "simple" potentials such as the Lennard-Jones potential. Moreover, multiscale methods for evolving cracks are rare. Efficient methods to coarse grain the fine scale defects are missing. However, the existing multiscale methods for fracture do not adaptively adjust the fine scale domain as the crack propagates. Most methods, therefore only "enlarge" the fine scale domain and therefore drastically increase computational cost. Adaptive adjustment requires the fine scale domain to be refined and coarsened. One of the major difficulties in multiscale methods for fracture is to up-scale fracture related material information from the fine scale to the coarse scale, in particular for complex crack problems. Most of the existing approaches therefore were applied to examples with comparatively few macroscopic cracks. Key contributions The bridging scale method is enhanced using the phantom node method so that cracks can be modeled at the coarse scale. To ensure self-consistency in the bulk, a virtual atom cluster is devised providing the response of the intact material at the coarse scale. A molecular statics model is employed in the fine scale where crack propagation is modeled by naturally breaking the bonds. The fine scale and coarse scale models are coupled by enforcing the displacement boundary conditions on the ghost atoms. An energy criterion is used to detect the crack tip location. Adaptive refinement and coarsening schemes are developed and implemented during the crack propagation. The results were observed to be in excellent agreement with the pure atomistic simulations. The developed multiscale method is one of the first adaptive multiscale method for fracture. A robust and simple three dimensional coarse graining technique to convert a given atomistic region into an equivalent coarse region, in the context of multiscale fracture has been developed. The developed method is the first of its kind. The developed coarse graining technique can be applied to identify and upscale the defects like: cracks, dislocations and shear bands. The current method has been applied to estimate the equivalent coarse scale models of several complex fracture patterns arrived from the pure atomistic simulations. The upscaled fracture pattern agree well with the actual fracture pattern. The error in the potential energy of the pure atomistic and the coarse grained model was observed to be acceptable. A first novel meshless adaptive multiscale method for fracture has been developed. The phantom node method is replaced by a meshless differential reproducing kernel particle method. The differential reproducing kernel particle method is comparatively more expensive but allows for a more "natural" coupling between the two scales due to the meshless interpolation functions. The higher order continuity is also beneficial. The centro symmetry parameter is used to detect the crack tip location. The developed multiscale method is employed to study the complex crack propagation. Results based on the meshless adaptive multiscale method were observed to be in excellent agreement with the pure atomistic simulations. The developed multiscale methods are applied to study the fracture in practical materials like Graphene and Graphene on Silicon surface. The bond stretching and the bond reorientation were observed to be the net mechanisms of the crack growth in Graphene. The influence of time step on the crack propagation was studied using two different time steps. Pure atomistic simulations of fracture in Graphene on Silicon surface are presented. Details of the three dimensional multiscale method to study the fracture in Graphene on Silicon surface are discussed. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2015,1 KW - Material KW - Strukturmechanik KW - Materialversagen KW - material failure Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20150507-23918 ER - TY - THES A1 - Sowoidnich, Thomas T1 - A Study of Retarding Effects on Cement and Tricalcium Silicate Hydration induced by Superplasticizers N2 - Fließmittel werden in Betonen verwendet, um deren Fließeigenschaften während der Verarbeitung zu verbessern und Wasser einzusparen. Beide Faktoren beeinflussen nicht nur den Frischbeton, sondern auch signifikant die Festbetoneigenschaften. Nachteilig wirken sich Fließmittel auf die Festigkeitsentwicklung aus, die z.T. sehr stark verzögert wird. Dies ist vor allem bei Bauteilen, die im Rahmen eines Vorfertigungsprozesses hergestellt werden, ein ökonomischer Nachteil. Die vorliegende Arbeit widmet sich den Ursachen für die Verzögerung der Portlandzementhydratation bei Verwendung von Fließmitteln. Um die komplexen Reaktionen, die während der Portlandzementhydratation auftreten, zu vereinfachen, betrachtet ein überwiegender Teil der Arbeit die Wechselwirkung Fließmittel-Tricalciumsilikat (Abk. Ca3SiO5 oder C3S, Hauptbestandteil von Portlandzementklinker). Die Untersuchungen werden in drei Hauptteilen durchgeführt, wobei Methoden wie u.a. isotherme Wärmeflusskalorimetrie, Elektrische Leitfähigkeit, Elektronenmikroskopie, ICP-OES, TOC als auch Analytische Ultrazentrifugation Anwendung finden. Basierend auf der Wechselwirkung von Kationen mit anionischen Ladungsträgern von Polymeren wird die Interaktion von Calcium mit Fließmitteln im ersten Teil der Arbeit untersucht. Dabei kommt es überwiegend zur Komplexierung von Calciumionen durch die funktionellen Gruppen der Plymere (Carboxyl- bzw. Sulfonguppen), die in zementären Umgebungen sowohl gelöst in der wässrigen Phase als auch als Bestandteil von Partikelgrenzflächen vorhanden sind. Neben diesen Effekten kann auch gezeigt werden, dass Fließmittel die Bildung von nanoskaligen Partikeln hervorrufen, die infolge der sterischen Wirkung von Fließmitteln dispergiert in der wässrigen Phase vorliegen (Clusterbildung). Analog zu neuesten Erkenntnissen aus dem Bereich der Biomineralisation ist daher davon auszugehen, dass diese Nanopartikel durch Agglomeration das Kristallwachtsum beeinflussen. Ausgehend von der Annahme, dass die Auflösungs- und/ oder Fällungskinetik durch die Wirkung von Fließmitteln behindert und damit für den Verzögerungseffekt der Fließmittel während der komplexen Hydratationsreaktion verantwortlich seien können, werden die zugrundeliegenden Vorgänge im zweiten Abschnitt getrennt voneinander untersucht. Es wird anhand von Lösungsuntersuchungen an C-S-H Phasen und Portlandit herausgestellt, dass die Komplexierung von gelösten Calciumionen durch funktionelle Gruppen der Polymere die Löslichkeit von Portlandit erhöht. Im Gegensatz führt die Komplexierung von Calciumionen in der wässrigen Phase zu einer Verringerung der Calciumionenkonzentration in der wässrigen Phase. Diese Effekte werden auf die unterschiedlich starke Adsorptionsneigung der Polymere an C-S-H-Phasen und Portlandit zurückgeführt. Es wird davon ausgegangen, dass die Adsorption aufgrund der größeren spezifischen Oberfläche stärker an den C-S-H-Phasen als am Portlandit auftritt. Demnach stellt sich dar, dass die Polymere erst nachdem die funktionellen Gruppen Calciumionen aus der wässrigen Phase komplexiert haben an den C-S-H-Phasen adsorbieren. Weiterhin kann gezeigt werden, dass die freie C3S Auflösungsrate in Anwesenheit von Fließmitteln keinen direkten Zusammenhang zur Verzögerung erkennen lässt. Teilweise kommt es zu einer in Bezug zur Kontrollprobe ohne Fließmittel erhöhten sowie auch verringerten Auflösungsrate. Wird das Komplexierungsvemögen der Fließmittel berücksichtigt, so kann durchaus eine verlangsamte freie Auflösungsrate ermittelt werden. Doch auch Calcit zeigt einen verzögernden Einfluss auf die freie C3S Auflösung, obwohl es den Gesamtprozess der Hydratation signifikant beschleunigt. Somit kann die behinderte Auflösung als mögliche Ursache für die verzögernde Wirkung während der Zementhydratation weder bestätigt noch widerlegt werden. Dieser Punkt sollte in zukünftigen Arbeiten weiter untersucht werden. Im letzten Schritt dieses Untersuchungsabschnitts wird die reine Kristallisation von C-S-H-Phasen und Portlandit untersucht. Es stellt sich heraus, dass Fließmittel insbesondere durch die Wirkung der Komplexierung von Ionen in der wässrigen Phase sowohl die Induktionszeit verlängern als auch die Kristallwachstumsrate verändern. Dies allein kann aber nicht die komplette Verzögerungswirkung erklären. Ein wichtiger Verzögerungsfaktor ist die Adsorption der Polymere an Kristalloberflächen als auch eine fließmittelbedingte Dispergierung von nanoskaligen Einzelpartikeln, die deren Agglomeration zu Kristallen behindert. Im letzten Hauptuntersuchungsabschnitt werden die gewonnenen Erkenntnisse auf die während der Zement- und Tricalciumsilikathydratation parallel ablaufenden Reaktionen analysiert. Dabei wird insbesondere die ionische Zusammensetzung der wässrigen Phase von C3S Pasten und Suspensionen untersucht, um Hinweise für eine kinetische Hemmung der Hydratationsreaktion zu identifizieren. Zusammenfassend wird festgestellt, dass die Ursachen der verzögernden Wirkung von Fließmitteln auf die Hydratation von C3S auf die starke Verzögerung der Kristallisation von Hydratphasen zurückzuführen ist. Dabei kommt den zwei Faktoren Komplexierung von Calciumionen an Oberflächen und Stabilisierung von nanoskaligen Partikeln eine zentrale Bedeutung zu. Diese Effekte können durch die Wirkung als Templat als auch durch Erhöhung der Löslichkeit infolge Komplexierung freier/gelöster Ionen teilkompensiert werden. Dass die Auflösungsreaktion durch die Anwesenheit von Fließmitteln behindert wird, kann nur indirekt anhand der Entwicklung von Ionenkonzentrationen festgestellt werden. Ob dieser Vorgang die Ursache oder die Folge des Lösungs-Fällungs-Mechanismus der Hydratation ist und damit die verzögernde Wirkung durch behinderte Auflösung des Edukts hervorgerufen wird, bleibt Gegenstand weiterer Untersuchungen. Im Rahmen der Arbeit kann auch gezeigt werden, dass Fließmittel chemisch als Inhibitoren wirken indem sie den Frequenzfaktor verringern. Darüber hinaus wird erstmalig eine Methode entwickelt, die die Bestimmung der Ionenkonzentration in Pasten in-situ erlaubt. Mit deren Hilfe wird dargestellt, dass die Entwicklung der Ionenkonzentration als auch die allgemein verwendete Wärmefreisetzungsrate (Kalorimetrie) miteinander korrespondiert. Darüber hinaus erlaubt die entwickelte Methode die weitere Differenzierung der Accelerationsperiode in drei Stadien. Die Kristallisation von C-S-H-Phasen und Portlandit ist für den Beginn der Haupthydratationsperiode entscheidend. N2 - Superplasticizers are utilized both to improve the fluidity during the placement and to reduce the water content of concretes. Both effects have also an impact on the properties of the hardened concrete. As a side effect the presence of superplasticizers affects the strength development of concretes that is strongly retarded. This may lead to an ecomomical drawback of the concrete manufacturing. The present work is aimed at gaining insights on the causes of the retarding effect of superplasticizers on the hydration of Portland cement. In order to simplify the complex interactions occurring during the hydration of Portland cement the majority of the work focuses on the interaction of superplasticizer and tricalcium silicate (Ca3SiO5 or C3S, the main compound of Portland cement clinker). The tests are performed in three main parts accompanied by methods as for example isothermal conduction calorimetry, electrical conductivity, Electron Microscopy, ICP-OES, TOC, as well as Analytical Ultracentrifugation. In the first main part and based on the interaction of cations and anionic charges of polymers, the interactions between calcium ions and superplasticizers are investigated. As a main effect calcium ions are complexed by the functional groups of the polymers (carboxy, sulfonic). Calcium ions may be both dissolved in the aqueous phase and a constitute of particle interfaces. Besides these effects it is furthermore shown that superplasticizers induce the formation of nanoscaled particles which are dispersed in the aqueous phase (cluster formation). Analogous to recent findings in the field of biomineralization, it is reasonable to assume that these nanoparticles influence the crystal growth by their assembly process. Based on the assumption that superplasticizers hinder either or both dissolution and precipitation and by that retard the cement hydration, the impact on separate reactions is investigated. On experiments that address the solubility of C-S-H phases and portlandite, it is shown that complexation of calcium ions in the aqueous phase by functional groups of polymers increases the solubility of portlandite. Contrary, in case of C-S-H solubility the complexation of calcium ions in solution leads to decrease of the calcium ion concentration in the aqueous phase. These effects are explained by differences in adsorption of polymers on C-S-H phases and portlandite. It is proposed that adsorption is stronger on C-S-H phases compared to portlandite due to the increased specific surface area of C-S-H phases. Following that, it is claimed that before polymers are able to adsorb on C-S-H phases the functional groups must be screened by calcium ions in the aqueous phase. It is further shown that data regarding the impact of superplasticizers on the unconstrained dissolution rate of C3S does not provide a clear relation to the overall retarding effect occurring during the hydration of C3S. Both increased and decreased dissolution rate with respect to the reference sample are detected. If the complexation capability of the superplasticizers is considered then also a reduced dissolution rate of C3S is determined. Despite the fact that the global hydration process is accelerated, the addition of calcite leads to a slower dissolution rate. Thus, a hindered unconstrained dissolution of C3S as possibly cause for the retarding effect still remains open for discussion. In the last section of this part, the pure crystallization of hydrate phases (C-S-H phases, portlandite) is fathomed. Results clearly show that superplasticizers prolong the induction time and modify the rate of crystal growth during pure crystallization in particular due to the complexation of ions in solution. But this effect is insufficient to account for the overall retarding effect. Further important factors are the blocking of crystal growth faces by adsorbed polymers and the dispersion of nanoscaled particles which hinders their agglomeration in order to build up crystals. In the last main part of the work, the previously gathered results are utilized in order to investigate hydration kinetics. During hydration, dissolution and precipitation occur in parallel. Thereby, special attention is laid on the ion composition of the aqueous phase of C3S pastes and suspensions in order to determine the rate limiting step. All in all it is concluded that the retarding effect of superplasticizers on the hydration of tricalcium silicate is based on the retardation of crystallization of hydrate phases (C-S-H phases and portlandite). Thereby, the two effects complexation of calcium ions on surfaces and stabilization of nanoscaled particles are of major importance. These mechanisms may partly be compensated by template performance and increase in solubility by complexation of ions in solution. The decreased dissolution rate of C3S by the presence of superplasticizers during the in parallel occuring hydration process can only be assessed indirectly by means of the development of the ion concentrations in the aqueous phase (reaction path). Whether this observation is the cause or the consequence within the dissolution-precipitation process and therefore accounts for the retarding effect remains a topic for further investigations. Besides these results it is shown that superplasticizers can be associated chemically with inhibitors because they reduce the frequency factor to end the induction period. Because the activation energy is widely unaffected it is shown that the basic reaction mechanism sustain. Furthermore, a method was developed which permits for the first time the determination of ion concentrations in the aqueous phase of C3S pastes in-situ. It is shown that during the C3S hydration the ion concentration in the aqueous phase is developed correspondingly to the heat release rate (calorimetry). The method permits the differentiation of the acceleration period in three stages. It is emphasized that crystallization of the product phases of C3S hydration, namely C-S-H phases and portlandite, are responsible for the end of the induction period. KW - Cement KW - Tricalcium silicate KW - Superplasticizer KW - Complexation KW - Retardation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20160224-25444 SN - 978-3-00-052204-8 ER -