TY - CHAP A1 - Nasser, Mourad ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - SEISMIC RESPONSE OF R/C FRAMES CONSIDERING DYNAMIC SOIL-STRUCTURE INTERACTION N2 - In spite of the extensive research in dynamic soil-structure interaction (SSI), there still exist miscon-ceptions concerning the role of SSI in the seismic performance of structures, especially the ones founded on soft soil. This is due to the fact that current analytical SSI models that are used to evaluate the influence of soil on the overall structural behavior are approximate models and may involve creeds and practices that are not always precise. This is especially true in the codified approaches which in-clude substantial approximations to provide simple frameworks for the design. As the direct numerical analysis requires a high computational effort, performing an analysis considering SSI is computationally uneconomical for regular design applications. This paper outlines the set up some milestones for evaluating SSI models. This will be achieved by investigating the different assumptions and involved factors, as well as varying the configurations of R/C moment-resisting frame structures supported by single footings which are subject to seismic excita-tions. It is noted that the scope of this paper is to highlight, rather than fully resolve, the above subject. A rough draft of the proposed approach is presented in this paper, whereas a thorough illustration will be carried out throughout the presentation in the course of the conference. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28759 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Scheiber, Frank ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - ROBUSTNESS IN CIVIL ENGINEERING - INFLUENCES OF THE STRUCTURAL MODEL ON THE EVALUATION OF THE STRUCTURAL ROBUSTNESS T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - The topic of structural robustness is covered extensively in current literature in structural engineering. A few evaluation methods already exist. Since these methods are based on different evaluation approaches, the comparison is difficult. But all the approaches have one in common, they need a structural model which represents the structure to be evaluated. As the structural model is the basis of the robustness evaluation, there is the question if the quality of the chosen structural model is influencing the estimation of the structural robustness index. This paper shows what robustness in structural engineering means and gives an overview of existing assessment methods. One is the reliability based robustness index, which uses the reliability indices of a intact and a damaged structure. The second one is the risk based robustness index, which estimates the structural robustness by the usage of direct and indirect risk. The paper describes how these approaches for the evaluation of structural robustness works and which parameters will be used. Since both approaches needs a structural model for the estimation of the structural behavior and the probability of failure, it is necessary to think about the quality of the chosen structural model. Nevertheless, the chosen model has to represent the structure, the input factors and reflect the damages which occur. On the example of two different model qualities, it will be shown, that the model choice is really influencing the quality of the robustness index. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27845 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Marzban, Samira A1 - Almasi, Ashkan A1 - Schwarz, Jochen T1 - REINFORCED CONCRETE STRUCTURAL WALL DATABASE DEVELOPMENT FOR MODEL VALIDATION N2 - Reinforced concrete walls are commonly selected as the lateral resisting systems in seismic design of buildings. The design procedure requires reliable/robust models to predict the wall response. Many researchers, thus, have focused on using the available experimental data to be able to comment on the quality of models at hand. What is missing though is an uncertain attitude towards the experimental data since such data can be affected by different sources of uncertainty. In this paper, we introduce the database created for model quality evaluation purposes considering the uncertainties in the experimental data. This is the first step of a larger study on experience-based model quality evaluation of reinforced concrete walls. Here, we briefly present the database as well as six sample validations of the developed numerical model (the quality of which is to be assessed). The database contains the information on nearly 300 wall specimens from about 50 sources. Both the database and the numerical model, built for uncertainty/sensitivity analysis purposes, are mainly based on ten parameters. These include geometry, material, reinforcement layout and loading properties. The validation results prove that the model is able to predict the wall response satisfactorily. Consequently, the validated numerical model could be used in further quality evaluation studies. KW - Baustoff KW - RC Wall KW - reinforced concrete wall KW - Database Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20150831-24523 ER - TY - CHAP A1 - Keitel, Holger ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - QUANTIFYING THE QUALITY OF PARTIAL MODEL COUPLING AND ITS EFFECT ON THE SIMULATED STRUCTURAL BEHAVIOR T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - The process of analysis and design in structural engineering requires the consideration of different partial models, for example loading, structural materials, structural elements, and analysis types. The various partial models are combined by coupling several of their components. Due to the large number of available partial models describing similar phenomena, many different model combinations are possible to simulate the same aspects of a structure. The challenging task of an engineer is to select a model combination that ensures a sufficient, reliable prognosis. In order to achieve this reliable prognosis of the overall structural behavior, a high individual quality of the partial models and an adequate coupling of the partial models is required. Several methodologies have been proposed to evaluate the quality of partial models for their intended application, but a detailed study of the coupling quality is still lacking. This paper proposes a new approach to assess the coupling quality of partial models in a quantitative manner. The approach is based on the consistency of the coupled data and applies for uni- and bidirectional coupled partial models. Furthermore, the influence of the coupling quality on the output quantities of the partial models is considered. The functionality of the algorithm and the effect of the coupling quality are demonstrated using an example of coupled partial models in structural engineering. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27689 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - THES A1 - Nikulla, Susanne T1 - Quality assessment of kinematical models by means of global and goal-oriented error estimation techniques T1 - Anwendung globaler und zielorientierter Fehlerschätzer zur Beurteilung der Notwendigkeit einer geometrisch nicht-linearen Berechnung N2 - Methods for model quality assessment are aiming to find the most appropriate model with respect to accuracy and computational effort for a structural system under investigation. Model error estimation techniques can be applied for this purpose when kinematical models are investigated. They are counted among the class of white box models, which means that the model hierarchy and therewith the best model is known. This thesis gives an overview of discretisation error estimators. Deduced from these, methods for model error estimation are presented. Their general goal is to make a prediction of the inaccuracies that are introduced using the simpler model without knowing the solution of a more complex model. This information can be used to steer an adaptive process. Techniques for linear and non-linear problems as well as global and goal-oriented errors are introduced. The estimation of the error in local quantities is realised by solving a dual problem, which serves as a weight for the primal error. So far, such techniques have mainly been applied in material modelling and for dimensional adaptivity. Within the scope of this thesis, available model error estimators are adapted for an application to kinematical models. Their applicability is tested regarding the question of whether a geometrical non-linear calculation is necessary or not. The analysis is limited to non-linear estimators due to the structure of the underlying differential equations. These methods often involve simplification, e.g linearisations. It is investigated to which extent such assumptions lead to meaningful results, when applied to kinematical models. N2 - Die verschiedenen Methoden zur Bewertung der Modellqualität haben ein Ziel: Das passende Modell in Bezug auf Genauigkeit und Berechnungsaufwand für eine konkrete Struktur zu finden. Steht dabei die Untersuchung eines Kinematik-Modells im Vordergrund, können Modellfehlerschätzer zur Modellbewertung verwendet werden. Dieser Zusammenhang gilt, solange es sich um mechanisch motivierte Modelle handelt, bei denen die Modellhierarchie und damit das beste Modell bekannt sind. Die vorliegende Arbeit beschreibt den Weg von den einfachen Fehlerschätzern für Diskretisierungsfehler bis zu den daraus abgeleiteten Modellfehlerschätzern. Das Ziel der letztgenannten besteht in der Vorhersage von Ungenauigkeit, die durch die Verwendung eines vereinfachten anstatt des komplexen Modells entstehen. Aus den gewonnenen Informationen wird eine adaptive Modellanpassung entwickelt. Die Methoden lassen sich dabei nach verschiedenen Kriterien unterscheiden. Diese diffenzieren zwischen den verschiedenen Anwendungsbereichen, zwischen linearen und nicht-linearen Modellen sowie zwischen globalen und ziel-orientierten Fehlern. Die bislang in der Literatur hauptsächlich zu findenden Anwendungsgebiete sind die Materialmodellierung und die Dimensionsadaptivität. Im Rahmen dieser Arbeit werden nun die bekannten Methoden zur Abschätzung des Modellfehlers auf kinematische Modelle erweitert. Zudem wird die Frage, ob eine geometrisch nicht-lineare Berechnung notwendig ist oder nicht, untersucht. Aufgrund der Struktur der zugrunde liegenden Differentialgleichungen beschränken sich die Analysen auf nicht-lineare Fehlerschätzer. Da diese Methoden oft auf Vereinfachungen wie z.B. die Linearisierung der Grundgleichungen zurückgreifen, wird in der vorliegenden Arbeit untersucht, inwieweit diese Annahmen zu verwertbaren Ergebnissen führen. T3 - Schriftenreihe des DFG Graduiertenkollegs 1462 Modellqualitäten // Graduiertenkolleg Modellqualitäten - 4 KW - Model quality, Model error estimation, Kinematical model, Geometric non-linearity, Finite Element method KW - Modellqualität, Modellfehlerschätzer, Geometrisch nicht-lineare Berechnung, Kinematik Modell, Finite Elemente Methode Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20120419-16161 PB - Verlag der Bauhaus-Universität Weimar CY - Weimar ER - TY - CHAP A1 - Khosravian, Reza A1 - Wuttke, Frank ED - Gürlebeck, Klaus ED - Lahmer, Tom T1 - QUALITATIVE INVESTIGATION OF THE EFFECT OF SOIL MODELING APPROACH ON DYNAMIC BEHAVIOR OF A SMALL-SCALE 2-DOF STRUCTURE WITH PILE FOUNDATION T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar N2 - Known as a sophisticated phenomenon in civil engineering problems, soil structure interaction has been under deep investigations in the field of Geotechnics. On the other hand, advent of powerful computers has led to development of numerous numerical methods to deal with this phenomenon, resulting in a wide variety of methods trying to simulate the behavior of the soil stratum. This survey studies two common approaches to model the soil’s behavior in a system consisting of a structure with two degrees of freedom, representing a two-storey frame structure made of steel, with the column resting on a pile embedded into sand in laboratory scale. The effect of soil simulation technique on the dynamic behavior of the structure is of major interest in the study. Utilized modeling approaches are the so-called Holistic method, and substitution of soil with respective impedance functions. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Building Information Modeling KW - Computerunterstütztes Verfahren KW - Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28080 SN - 1611-4086 ER - TY - CHAP A1 - Stein, Peter ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - NURBS-BASED ELEMENTS AS A BASIS FOR INTEGRATING ENGINEERING APPLICATIONS N2 - Building information modeling offers a huge potential for increasing the productivity and quality of construction planning processes. Despite its promising concept, this approach has not found widespread use. One of the reasons is the insufficient coupling of the structural models with the general building model. Instead, structural engineers usually set up a structural model that is independent from the building model and consists of mechanical models of reduced dimension. An automatic model generation, which would be valuable in case of model revisions is therefore not possible. This can be overcome by a volumetric formulation of the problem. A recent approach employed the p-version of the finite element method to this problem. This method, in conjunction with a volumetric formulation is suited to simulate the structural behaviour of both „thick“ solid bodies and thin-walled structures. However, there remains a notable discretization error in the numerical models. This paper therefore proposes a new approach for overcoming this situation. It sugggests the combination of the Isogeometric analysis together with the volumetric models in order to integrate the structural design into the digital, building model-centered planning process and reduce the discretization error. The concept of the isogeometric analysis consists, roughly, in the application of NURBS functions to represent the geometry and the shape functions of the elements. These functions possess some beneficial properties regarding numerical simulation. Their use, however, leads to some intricacies related to the setup of the stiffness matrix. This paper describes some of these properties. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28944 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Wudtke, Idna A1 - Werner, Frank ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - MODELLING OF MATERIAL PHENOMENA OF STEEL IN CONSTITUTIVE RELATIONS IN CONTEXT OF WELDING N2 - The application of partly decoupled approach by means of continuum mechanics facilitates the calculation of structural responses due to welding. The numerical results demonstrate the ability of a qualitative prediction of welded connections. As it is intended to integrate the local effects of a joint in structural analysis of steel constructions, it is necessary to meet higher approaches towards quality. The wide array of material parameters are presented, which are affecting the thermal, metallurgical and mechanical behavior, and which have to be identified. For that purpose further investigations are necessary to analyze the sensitivity of the models towards different material properties. The experimental determination of every material parameter is not possible due to the extraordinary laborious efforts needed. Besides that, experimentally identified parameters can be applied only for the tested steel quality for measured temperature-time regimes. For that reason alternative approaches for identification of material parameters, such as optimization strategies, have to be applied. After a definition of material parameters a quantitative prediction of welded connections will also be possible. Numerical results show the effect of phase transformation, activated by welding process, on residual stress state. As these phenomena occur in local areas in the range of crystal and grain sizes, the description of microscopic phenomena and their propagation on a macroscopic level due to approaches of homogenization might be expedient. Nevertheless, one should bear in mind, the increasing number of material parameters as well as the complexity of their experimental determination. Thus the microscopic approach should always be investigated under the scope of ability and efficiency of a required prediction. Under certain circumstances a step backwards, adopting a phenomenological approach, also can be beneficial. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-29032 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Leipold, Mathias A1 - Schwarz, Jochen ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - MODELING TECHNIQUES FOR RC-FRAME SYSTEMS WITH INFILLS N2 - There are many different approaches to simulate the mechanical behavior of RC−Frames with masonry infills. In this paper, selected modeling techniques for masonry infills and reinforced concrete frame members will be discussed − stressing the attention on the damaging effects of the individual members and the entire system under quasi−static horizontal loading. The effect of the infill walls on the surrounding frame members is studied using equivalent strut elements. The implemented model consider in−plane failure modes for the infills, such as bed joint sliding and corner crushing. These frame member models differ with respect to their stress state. Finally, examples are provided and compared with experimental data from a real size test executed on a three story RC−Frame with and without infills. The quality of the model is evaluated on the basis of load−displacement relationships as well as damage progression. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28684 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Karaki, Ghada A1 - Freundt, Ursula A1 - Vogt, Ralf ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - MODELING OF BRIDGE BEARING UNDER TRANSIENT LOADING N2 - The evident advances of the computational power of the digital computers enable the modeling of the total system of structures. Such modeling demands compatible representations of the couplings of different structural subsystems. Therefore, models of dynamic interaction between the vehicle and the bridge and models of a bridge bearing, a coupling element between the bridge's superstructure and substructure, are of interest and discussed within this paper. The vehicle-bridge interaction may be described as a function connecting two sets of behavior. In this case, the coupling is embodied by mutual parameters that affect both systems, such as the frequency content of the bridge and the vehicle. Whereas the bridge bearings are elements used specifically to couple, in such elements the deformation and the transferred loads are used in characterizing the coupling The nature of these couplings and their influence on the bridge response is different. However, the need to assess the amount of dynamic response transferred by or within these couplings is a common argument. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28544 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER -