TY - JOUR A1 - Zhang, Yongzheng A1 - Ren, Huilong T1 - Implicit implementation of the nonlocal operator method: an open source code JF - Engineering with computers N2 - In this paper, we present an open-source code for the first-order and higher-order nonlocal operator method (NOM) including a detailed description of the implementation. The NOM is based on so-called support, dual-support, nonlocal operators, and an operate energy functional ensuring stability. The nonlocal operator is a generalization of the conventional differential operators. Combined with the method of weighed residuals and variational principles, NOM establishes the residual and tangent stiffness matrix of operate energy functional through some simple matrix without the need of shape functions as in other classical computational methods such as FEM. NOM only requires the definition of the energy drastically simplifying its implementation. The implementation in this paper is focused on linear elastic solids for sake of conciseness through the NOM can handle more complex nonlinear problems. The NOM can be very flexible and efficient to solve partial differential equations (PDEs), it’s also quite easy for readers to use the NOM and extend it to solve other complicated physical phenomena described by one or a set of PDEs. Finally, we present some classical benchmark problems including the classical cantilever beam and plate-with-a-hole problem, and we also make an extension of this method to solve complicated problems including phase-field fracture modeling and gradient elasticity material. KW - Strukturmechanik KW - Nonlocal operator method KW - Operator energy functional KW - Implicit KW - Dual-support KW - Variational principle KW - Taylor series expansion KW - Stiffness matrix Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220216-45930 UR - https://link.springer.com/article/10.1007/s00366-021-01537-x VL - 2022 SP - 1 EP - 35 PB - Springer CY - London ER - TY - THES A1 - Vollmering, Max T1 - Damage Localization of Mechanical Structures by Subspace Identification and Krein Space Based H-infinity Estimation N2 - This dissertation is devoted to the theoretical development and experimental laboratory verification of a new damage localization method: The state projection estimation error (SP2E). This method is based on the subspace identification of mechanical structures, Krein space based H-infinity estimation and oblique projections. To explain method SP2E, several theories are discussed and laboratory experiments have been conducted and analysed. A fundamental approach of structural dynamics is outlined first by explaining mechanical systems based on first principles. Following that, a fundamentally different approach, subspace identification, is comprehensively explained. While both theories, first principle and subspace identification based mechanical systems, may be seen as widespread methods, barely known and new techniques follow up. Therefore, the indefinite quadratic estimation theory is explained. Based on a Popov function approach, this leads to the Krein space based H-infinity theory. Subsequently, a new method for damage identification, namely SP2E, is proposed. Here, the introduction of a difference process, the analysis by its average process power and the application of oblique projections is discussed in depth. Finally, the new method is verified in laboratory experiments. Therefore, the identification of a laboratory structure at Leipzig University of Applied Sciences is elaborated. Then structural alterations are experimentally applied, which were localized by SP2E afterwards. In the end four experimental sensitivity studies are shown and discussed. For each measurement series the structural alteration was increased, which was successfully tracked by SP2E. The experimental results are plausible and in accordance with the developed theories. By repeating these experiments, the applicability of SP2E for damage localization is experimentally proven. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2018,5 KW - Strukturmechanik KW - Schätztheorie Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20180730-37728 ER - TY - THES A1 - Schemmann, Christoph T1 - Optimierung von radialen Verdichterlaufrädern unter Berücksichtigung empirischer und analytischer Vorinformationen mittels eines mehrstufigen Sampling Verfahrens T1 - Optimization of Centrifugal Compressor Impellers by a Multi-fidelity Sampling Method Taking Analytical and Empirical Information into Account N2 - Turbomachinery plays an important role in many cases of energy generation or conversion. Therefore, turbomachinery is a promising approaching point for optimization in order to increase the efficiency of energy use. In recent years, the use of automated optimization strategies in combination with numerical simulation has become increasingly popular in many fields of engineering. The complex interactions between fluid and solid mechanics encountered in turbomachines on the one hand and the high computational expense needed to calculate the performance on the other hand, have, however, prevented a widespread use of these techniques in this field of engineering. The objective of this work was the development of a strategy for efficient metamodel based optimization of centrifugal compressor impellers. In this context, the main focus is the reduction of the required numerical expense. The central idea followed in this research was the incorporation of preliminary information acquired from low-fidelity computation methods and empirical correlations into the sampling process to identify promising regions of the parameter space. This information was then used to concentrate the numerically expensive high-fidelity computations of the fluid dynamic and structure mechanic performance of the impeller in these regions while still maintaining a good coverage of the whole parameter space. The development of the optimization strategy can be divided into three main tasks. Firstly, the available preliminary information had to be researched and rated. This research identified loss models based on one dimensional flow physics and empirical correlations as the best suited method to predict the aerodynamic performance. The loss models were calibrated using available performance data to obtain a high prediction quality. As no sufficiently exact models for the prediction of the mechanical loading of the impellercould be identified, a metamodel based on finite element computations was chosen for this estimation. The second task was the development of a sampling method which concentrates samples in regions of the parameter space where high quality designs are predicted by the preliminary information while maintaining a good overall coverage. As available methods like rejection sampling or Markov-chain Monte-Carlo methods did not meet the requirements in terms of sample distribution and input correlation, a new multi-fidelity sampling method called “Filtered Sampling“has been developed. The last task was the development of an automated computational workflow. This workflow encompasses geometry parametrization, geometry generation, grid generation and computation of the aerodynamic performance and the structure mechanic loading. Special emphasis was put into the development of a geometry parametrization strategy based on fluid mechanic considerations to prevent the generation of physically inexpedient designs. Finally, the optimization strategy, which utilizes the previously developed tools, was successfully employed to carry out three optimization tasks. The efficiency of the method was proven by the first and second testcase where an existing compressor design was optimized by the presented method. The results were comparable to optimizations which did not take preliminary information into account, while the required computational expense cloud be halved. In the third testcase, the method was applied to generate a new impeller design. In contrast to the previous examples, this optimization featuredlargervariationsoftheimpellerdesigns. Therefore, theapplicability of the method to parameter spaces with significantly varying designs could be proven, too. N2 - Turbomaschinen sind eine entscheidende Komponente in vielen Energiewandlungs- oder Energieerzeugungsprozessen und daher als vielversprechender Ansatzpunkt für eine Effizienzsteigerung der Energie-und Ressourcennutzung anzusehen. Im Laufe des letzten Jahrzehnts haben automatisierte Optimierungsmethoden in Verbindung mit numerischer Simulation zunehmend breitere Verwendung als Mittel zur Effizienzsteigerung in vielen Bereichen der Ingenieurwissenschaften gefunden. Allerdings standen die komplexen Interaktionen zwischen Strömungs- und Strukturmechanik sowie der hohe nummerische Aufwand einem weitverbreiteten Einsatz dieser Methoden im Turbomaschinenbereich bisher entgegen. Das Ziel dieser Forschungsaktivität ist die Entwicklung einer effizienten Strategie zur metamodellbasierten Optimierung von radialen Verdichterlaufrädern. Dabei liegt der Schwerpunkt auf einer Reduktion des benötigten numerischen Aufwandes. Der in diesem Vorhaben gewählte Ansatz ist das Einbeziehen analytischer und empirischer Vorinformationen (“lowfidelity“) in den Sampling Prozess, um vielversprechende Bereiche des Parameterraumes zu identifizieren. Diese Informationen werden genutzt um die aufwendigen numerischen Berechnungen (“high-fidelity“) des strömungs- und strukturmechanischen Verhaltens der Laufräder in diesen Bereichen zu konzentrieren, während gleichzeitig eine ausreichende Abdeckung des gesamten Parameterraumes sichergestellt wird. Die Entwicklung der Optimierungsstrategie ist in drei zentrale Arbeitspakete aufgeteilt. In einem ersten Schritt werden die verfügbaren empirischen und analytischen Methoden gesichtet und bewertet. In dieser Recherche sind Verlustmodelle basierend auf eindimensionaler Strömungsmechanik und empirischen Korrelationen als bestgeeignete Methode zur Vorhersage des aerodynamischen Verhaltens der Verdichter identifiziert worden. Um eine hohe Vorhersagegüte sicherzustellen, sind diese Modelle anhand verfügbarer Leistungsdaten kalibriert worden. Da zur Vorhersage der mechanischen Belastung des Laufrades keine brauchbaren analytischen oder empirischen Modelle ermittelt werden konnten, ist hier ein Metamodel basierend auf Finite-Element Berechnungen gewählt worden. Das zweite Arbeitspaket beinhaltet die Entwicklung der angepassten Samplingmethode, welche Samples in Bereichen des Parameterraumes konzentriert, die auf Basis der Vorinformationen als vielversrechend angesehen werden können. Gleichzeitig müssen eine gleichmäßige Abdeckung des gesamten Parameterraumes und ein niedriges Niveau an Eingangskorrelationen sichergestellt sein. Da etablierte Methoden wie Markov-Ketten-Monte-Carlo-Methoden oder die Verwerfungsmethode diese Voraussetzungen nicht erfüllen, ist ein neues, mehrstufiges Samplingverfahren (“Filtered Sampling“) entwickelt worden. Das letzte Arbeitspaket umfasst die Entwicklung eines automatisiertenSimulations-Workflows. Dieser Workflow umfasst Geometrieparametrisierung, Geometrieerzeugung, Netzerzeugung sowie die Berechnung des aerodynamischen Betriebsverhaltens und der strukturmechanischen Belastung. Dabei liegt ein Schwerpunkt auf der Entwicklung eines Parametrisierungskonzeptes, welches auf strömungsmechanischen Zusammenhängen beruht, um so physikalisch nicht zielführende Parameterkombinationen zu vermeiden. Abschließend ist die auf den zuvor entwickelten Werkzeugen aufbauende Optimierungsstrategie erfolgreich eingesetzt worden, um drei Optimierungsfragestellungen zu bearbeiten. Im ersten und zweiten Testcase sind bestehende Verdichterlaufräder mit der vorgestellten Methode optimiert worden. Die erzielten Optimierungsergebnisse sind von ähnlicher Güte wie die solcher Optimierungen, die keine Vorinformationen berücksichtigen, allerdingswirdnurdieHälfteannumerischemAufwandbenötigt. IneinemdrittenTestcase ist die Methode eingesetzt worden, um ein neues Laufraddesign zu erzeugen. Im Gegensatz zu den vorherigen Beispielen werden im Rahmen dieser Optimierung stark unterschiedliche Designs untersucht. Dadurch kann an diesem dritten Beispiel aufgezeigt werden, dass die Methode auch für Parameterräume mit stakt variierenden Designs funktioniert. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2019,3 KW - Simulation KW - Maschinenbau KW - Optimierung KW - Strömungsmechanik KW - Strukturmechanik Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190910-39748 ER - TY - JOUR A1 - Reichert, Ina A1 - Olney, Peter A1 - Lahmer, Tom T1 - Combined approach for optimal sensor placement and experimental verification in the context of tower-like structures JF - Journal of Civil Structural Health Monitoring N2 - When it comes to monitoring of huge structures, main issues are limited time, high costs and how to deal with the big amount of data. In order to reduce and manage them, respectively, methods from the field of optimal design of experiments are useful and supportive. Having optimal experimental designs at hand before conducting any measurements is leading to a highly informative measurement concept, where the sensor positions are optimized according to minimal errors in the structures’ models. For the reduction of computational time a combined approach using Fisher Information Matrix and mean-squared error in a two-step procedure is proposed under the consideration of different error types. The error descriptions contain random/aleatoric and systematic/epistemic portions. Applying this combined approach on a finite element model using artificial acceleration time measurement data with artificially added errors leads to the optimized sensor positions. These findings are compared to results from laboratory experiments on the modeled structure, which is a tower-like structure represented by a hollow pipe as the cantilever beam. Conclusively, the combined approach is leading to a sound experimental design that leads to a good estimate of the structure’s behavior and model parameters without the need of preliminary measurements for model updating. KW - Strukturmechanik KW - Finite-Elemente-Methode KW - tower-like structures KW - experimental validation KW - mean-squared error KW - fisher-information matrix Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210804-44701 UR - https://link.springer.com/article/10.1007/s13349-020-00448-7 VL - 2021 IS - volume 11 SP - 223 EP - 234 PB - Heidelberg CY - Springer ER - TY - THES A1 - Itam, Zarina T1 - Numerical Simulation of Thermo-Chemo-Hygro-Mechanical Alkali-Silica Reaction Model in Concrete at the Mesoscale and Macroscale N2 - Alkali-silica reaction causes major problems in concrete structures due to the rapidity of its deformation which leads to the serviceability limit of the structure being reached well before its time. Factors that affect ASR vary greatly, including alkali and silica content, relative humidity, temperature and porosity of the cementitious matrix,all these making it a very complex phenomenon to consider explicitly. With this in mind, the finite element technique was used to build models and generate expansive pressures and damage propagation due to ASR under the influence of thermo-hygrochemoelastic loading. Since ASR initializes in the mesoscopic regions of the concrete, the accumulative effects of its expansion escalates onto the macroscale level with the development of web cracking on the concrete surface, hence solution of the damage model as well as simulation of the ASR phenomenon at both the macroscale and mesoscale levels have been performed. The macroscale model realizes the effects of ASR expansion as a whole and shows how it develops under the influence of moisture, thermal and mechanical loading. Results of the macroscale modeling are smeared throughout the structure and are sufficient to show how damage due to ASR expansion orientates. As opposed to the mesoscale model, the heterogeneity of the model shows us how difference in material properties between aggregates and the cementitious matrix facilitates ASR expansion. With both these models, the ASR phenomenon under influence of thermo-chemo-hygro-mechanical loading can be better understood. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2014,2 KW - Strukturmechanik KW - Alkali-silica reaction KW - macroscale KW - mesoscale KW - ASR Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20141218-23352 ER - TY - THES A1 - Budarapu, Pattabhi Ramaiah T1 - Adaptive multiscale methods for fracture T1 - Adaptive Multiskalen-Methoden zur Modellierung von Materialversagen N2 - One major research focus in the Material Science and Engineering Community in the past decade has been to obtain a more fundamental understanding on the phenomenon 'material failure'. Such an understanding is critical for engineers and scientists developing new materials with higher strength and toughness, developing robust designs against failure, or for those concerned with an accurate estimate of a component's design life. Defects like cracks and dislocations evolve at nano scales and influence the macroscopic properties such as strength, toughness and ductility of a material. In engineering applications, the global response of the system is often governed by the behaviour at the smaller length scales. Hence, the sub-scale behaviour must be computed accurately for good predictions of the full scale behaviour. Molecular Dynamics (MD) simulations promise to reveal the fundamental mechanics of material failure by modeling the atom to atom interactions. Since the atomistic dimensions are of the order of Angstroms ( A), approximately 85 billion atoms are required to model a 1 micro- m^3 volume of Copper. Therefore, pure atomistic models are prohibitively expensive with everyday engineering computations involving macroscopic cracks and shear bands, which are much larger than the atomistic length and time scales. To reduce the computational effort, multiscale methods are required, which are able to couple a continuum description of the structure with an atomistic description. In such paradigms, cracks and dislocations are explicitly modeled at the atomistic scale, whilst a self-consistent continuum model elsewhere. Many multiscale methods for fracture are developed for "fictitious" materials based on "simple" potentials such as the Lennard-Jones potential. Moreover, multiscale methods for evolving cracks are rare. Efficient methods to coarse grain the fine scale defects are missing. However, the existing multiscale methods for fracture do not adaptively adjust the fine scale domain as the crack propagates. Most methods, therefore only "enlarge" the fine scale domain and therefore drastically increase computational cost. Adaptive adjustment requires the fine scale domain to be refined and coarsened. One of the major difficulties in multiscale methods for fracture is to up-scale fracture related material information from the fine scale to the coarse scale, in particular for complex crack problems. Most of the existing approaches therefore were applied to examples with comparatively few macroscopic cracks. Key contributions The bridging scale method is enhanced using the phantom node method so that cracks can be modeled at the coarse scale. To ensure self-consistency in the bulk, a virtual atom cluster is devised providing the response of the intact material at the coarse scale. A molecular statics model is employed in the fine scale where crack propagation is modeled by naturally breaking the bonds. The fine scale and coarse scale models are coupled by enforcing the displacement boundary conditions on the ghost atoms. An energy criterion is used to detect the crack tip location. Adaptive refinement and coarsening schemes are developed and implemented during the crack propagation. The results were observed to be in excellent agreement with the pure atomistic simulations. The developed multiscale method is one of the first adaptive multiscale method for fracture. A robust and simple three dimensional coarse graining technique to convert a given atomistic region into an equivalent coarse region, in the context of multiscale fracture has been developed. The developed method is the first of its kind. The developed coarse graining technique can be applied to identify and upscale the defects like: cracks, dislocations and shear bands. The current method has been applied to estimate the equivalent coarse scale models of several complex fracture patterns arrived from the pure atomistic simulations. The upscaled fracture pattern agree well with the actual fracture pattern. The error in the potential energy of the pure atomistic and the coarse grained model was observed to be acceptable. A first novel meshless adaptive multiscale method for fracture has been developed. The phantom node method is replaced by a meshless differential reproducing kernel particle method. The differential reproducing kernel particle method is comparatively more expensive but allows for a more "natural" coupling between the two scales due to the meshless interpolation functions. The higher order continuity is also beneficial. The centro symmetry parameter is used to detect the crack tip location. The developed multiscale method is employed to study the complex crack propagation. Results based on the meshless adaptive multiscale method were observed to be in excellent agreement with the pure atomistic simulations. The developed multiscale methods are applied to study the fracture in practical materials like Graphene and Graphene on Silicon surface. The bond stretching and the bond reorientation were observed to be the net mechanisms of the crack growth in Graphene. The influence of time step on the crack propagation was studied using two different time steps. Pure atomistic simulations of fracture in Graphene on Silicon surface are presented. Details of the three dimensional multiscale method to study the fracture in Graphene on Silicon surface are discussed. T3 - ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar - 2015,1 KW - Material KW - Strukturmechanik KW - Materialversagen KW - material failure Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20150507-23918 ER -