TY - JOUR A1 - Lizarazu, Jorge A1 - Harirchian, Ehsan A1 - Shaik, Umar Arif A1 - Shareef, Mohammed A1 - Antoni-Zdziobek, Annie A1 - Lahmer, Tom T1 - Application of machine learning-based algorithms to predict the stress-strain curves of additively manufactured mild steel out of its microstructural characteristics JF - Results in Engineering N2 - The study presents a Machine Learning (ML)-based framework designed to forecast the stress-strain relationship of arc-direct energy deposited mild steel. Based on microstructural characteristics previously extracted using microscopy and X-ray diffraction, approximately 1000 new parameter sets are generated by applying the Latin Hypercube Sampling Method (LHSM). For each parameter set, a Representative Volume Element (RVE) is synthetically created via Voronoi Tessellation. Input raw data for ML-based algorithms comprises these parameter sets or RVE-images, while output raw data includes their corresponding stress-strain relationships calculated after a Finite Element (FE) procedure. Input data undergoes preprocessing involving standardization, feature selection, and image resizing. Similarly, the stress-strain curves, initially unsuitable for training traditional ML algorithms, are preprocessed using cubic splines and occasionally Principal Component Analysis (PCA). The later part of the study focuses on employing multiple ML algorithms, utilizing two main models. The first model predicts stress-strain curves based on microstructural parameters, while the second model does so solely from RVE images. The most accurate prediction yields a Root Mean Squared Error of around 5 MPa, approximately 1% of the yield stress. This outcome suggests that ML models offer precise and efficient methods for characterizing dual-phase steels, establishing a framework for accurate results in material analysis. KW - Maschinelles Lernen KW - Baustahl KW - Spannungs-Dehnungs-Beziehung KW - Arc-direct energy deposition KW - Mild steel KW - Dual phase steel KW - Stress-strain curve KW - OA-Publikationsfonds2023 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20231207-65028 UR - https://www.sciencedirect.com/science/article/pii/S2590123023007144 VL - 2023 IS - Volume 20 (2023) SP - 1 EP - 12 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Alemu, Yohannes L. A1 - Habte, Bedilu A1 - Lahmer, Tom A1 - Urgessa, Girum T1 - Topologically preoptimized ground structure (TPOGS) for the optimization of 3D RC buildings JF - Asian Journal of Civil Engineering N2 - As an optimization that starts from a randomly selected structure generally does not guarantee reasonable optimality, the use of a systemic approach, named the ground structure, is widely accepted in steel-made truss and frame structural design. However, in the case of reinforced concrete (RC) structural optimization, because of the orthogonal orientation of structural members, randomly chosen or architect-sketched framing is used. Such a one-time fixed layout trend, in addition to its lack of a systemic approach, does not necessarily guarantee optimality. In this study, an approach for generating a candidate ground structure to be used for cost or weight minimization of 3D RC building structures with included slabs is developed. A multiobjective function at the floor optimization stage and a single objective function at the frame optimization stage are considered. A particle swarm optimization (PSO) method is employed for selecting the optimal ground structure. This method enables generating a simple, yet potential, real-world representation of topologically preoptimized ground structure while both structural and main architectural requirements are considered. This is supported by a case study for different floor domain sizes. KW - Bodenmechanik KW - Strukturanalyse KW - Optimierung KW - Stahlbetonkonstruktion KW - Dreidimensionales Modell KW - ground structure KW - TPOGS KW - topology optimization KW - 3D reinforced concrete buildings Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20230517-63677 UR - https://link.springer.com/article/10.1007/s42107-023-00640-2 VL - 2023 SP - 1 EP - 11 PB - Springer International Publishing CY - Cham ER -