TY - JOUR A1 - Dressel, Dennys T1 - Reaktivität von Hüttensand : Thermodynamische Grundlagen und Anwendung N2 - Die thermodynamischen Grundlagen der Hydratation von Hüttensand als Hauptbestandteil von Zementen werden erforscht. Hierbei werden thermodynamische Bildungs- und Reaktionsdaten experimentell bestimmt und berechnet. Darüber hinaus wird der Prozess der Feststoffauflösung von Hüttensand in wässrigen Lösungen untersucht. Lösungs- und Fällungsprozesse werden unter verschiedenen Konditionen gemessen, ausgewertet und diskutiert. Die Ergebnisse werden im weiteren Verlauf zur Bestimmung der Hydratationsgrades in Pasten sowie zum besseren Verständnis in der Wechselwirkung zwischen Hüttensanden und Mahlhilfsstoffen genutzt und angewandt. KW - Hüttensand KW - Thermodynamik Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20160829-26778 ER - TY - THES A1 - Eberhardt, Arnd Bernd T1 - On the mechanisms of shrinkage reducing admixtures in self con-solidating mortars and concretes N2 - 'Zur Wirkungsweise schwindreduzierender Zusatzmittel in selbstverdichtenden Mörteln und Betonen' Problemstellung und Zielsetzung 1. Der Einsatz selbstverdichtender Mörtel und Betone im Bauwesen erbringt klare Vorteile. Dies sind im Wesentlichen eine erhöhte Betonierleistung, verbesserte Betonierqualität für bewehrten Beton im Allgemeinen und für filigrane, eng bewehrte Bauteile im Besonderen. Die mit den traditionellen Methoden des Betonbaus verbundenen Lärmemissionen werden erheblich reduziert. Der Wegfall der für herkömmlichen Beton notwendigen Verdichtungsarbeit reduziert den manuellen Aufwand und die damit verbundenen Gesundheitsrisiken. Das im selbstverdichtenden Beton benötigte hohe Bindemittelleimvolumen ist der Betondauerhaftigkeit abträglich. Es bewirkt, dass selbstverdichtende Betone ein erhöhtes Schwindmaß sowie eine höhere Rissneigung aufweisen. Ersteres kann für Betonbauteile zu erheblichen Verformungen oder Zwangsspannungen führen, während Letzteres die Dauerhaftigkeit des Baustoffes Beton aufgrund einer Begünstigung rissinduzierter Schädigungsmechanismen stark beeinträchtigt. 2. Herkömmliche Methoden zur Schwindreduktion und Rissvermeidung verfolgen hauptsächlich das Ziel, die im Beton einzusetzenden Bindemittelmengen zu reduzieren. Für selbstverdichtende Betone ist dieses Konzept nur sehr begrenzt anwendbar, da die Selbstverdichtung dieser Betone relativ hohe Bindemittelleimvolumen erfordert. Eine Möglichkeit das Ausmaß des Schwindens und damit die Rissanfälligkeit selbstverdichtender Betone zu senken, besteht in der Anwendung schwindreduzierender Betonzusatzmittel. Eingeführt in den achtziger Jahren des 20ten Jahrhunderts in Japan, erweisen sich diese Zusatzmittel als effiziente Methode zur Verbesserung der Qualität bindemittelreicher Hochleistungsbetone im Allgemeinen und selbstverdichtender Betone im Besonderen. 3. Während die Wirksamkeit schwindreduzierender Betonzusatzmittel in zahlreichen anwendungsorientierten Studien nachgewiesen werden konnte, ist das Wirkprinzip nur unzureichend erforscht. Eines der Hauptziele dieser Arbeit ist deshalb die gründliche Erforschung des Wirkmechanismus schwindreduzierender Betonzusatzmittel. 4. Weiterhin besteht Unklarheit, wie diese Zusätze in den Chemismus der Zementhydratation eingreifen und ob dies der allgemeinen Dauerhaftigkeit des Baustoffes Beton abträglich ist. Ein wichtiges Ziel dieser Arbeit ist deshalb die gründliche Erforschung der Zementhydratation in Gegenwart einer repräsentativen Auswahl verschiedener Typen schwindreduzierender Betonzusatzmittel. 5. Die Nachhaltigkeit der Anwendung schwindreduzierender Zusatzmittel ist bedeutend für die Betondauerhaftigkeit. Ob schwindreduzierende Zusatzmittel auslaugbar sind und ob eine Auslaugung die Schwindreduktion langfristig beeinträchtigt, sind weitere Fragen, denen im Rahmen dieser Arbeit nachgegangen wird. Stand der Wissenschaft 6. Schwinden und Quellen von zementären Baustoffen wird im Allgemeinen mittels makroskopisch-thermodynamischer Ansätze beschrieben. Der stark vereinfachte Ansatz kapillaren Unterdrucks bzw. hydrostatischen Drucks als treibende Kraft für hygrische Verformungen wird weitgehend abgelehnt. Vielmehr wird im Bereich moderater Luftfeuchten der Spaltdruck und im Bereich niedriger Luftfeuchten die Oberflächenenergie zur Beschreibung der hygrischen Volumenstabilität herangezogen. 7. Schwindreduzierende Betonzusatzmittel bestehen überwiegend aus synergistischen Abmischungen nicht-ionischer Tenside mit Glykolen. Die amphiphilen Eigenschaften der nicht-ionischen Tenside führen zu einer Senkung der Oberflächenspannung des Zementporenwassers. In Abhängigkeit ihrer Konzentration in wässrigen Elektrolyten bilden nicht-ionische Tenside Mizellen und/oder Flüssigkristalle. Beobachtet wurden Mischungslücken und Aussalzungen dieser organischen, oberflächenaktiven Substanzen. Durch die Zugabe von Glykolen wird die Mischbarkeit nicht-ionischer Tenside mit wässrigen Elektrolyten stark erhöht und führt zu einer Absenkung der Bildung von Flüssigkristallen und organischen Aussalzungen sowie zu einer verminderten Adsorption des Tensides an Feststoffoberflächen. Der ausschließlich in der Patentliteratur erwähnte Synergieeffekt bei der Abmischung nicht-ionischer Tenside mit Glykolen zu Schwindreduzierern bezieht sich auf eine erhöhte Schwindreduktionskapazität des Zusatzmittels und beruht auf der Abmilderung aller Effekte, die zu einer Abscheidung des Tensides aus der wässrigen Lösung führen. 8. Eine Implementierung der spezifischen chemisch-physikalischen Eigenschaften schwind-reduzierender Zusatzmittel in bestehende Modelle zur Beschreibung des Trocknungsschwindens ist der Fachliteratur nicht zu entnehmen. Mit Ausnahme des Kapillardruckmodells zur Vorhersage des Trocknungsschwindens lassen sich Charakteristika schwindreduzierender Betonzusatzmittel, im Speziellen ihrer Oberflächenaktivität, nicht bzw. nur unzureichend in bestehende Modelle zum Trocknungsschwinden implementieren. Methodik 9. Die Oberflächenaktivität einer repräsentativen Auswahl an Schwindreduzierern wurde in makroskopischen Versuchen an synthetischen als auch an extrahierten Zementporenwässern quantifiziert. Dies umfasste auch die Quantifizierung von Mischungslücken und organischen Aussalzungen. 10. Ein in dieser Arbeit entwickelter theoretischer Ansatz zur Auswertung herkömmlicher Messungen der Oberflächenspannung erlaubt eine Abschätzung der Oberflächenspannung der Porenlösung im trocknenden, zementären Porensystem. 11. Der Einfluss schwindreduzierender Zusatzmittel auf den Hydratationsmechanismus, d.h. Hydratphasenbestand und Hydratationskinetik, wurde mittels Thermogravimetrie, Röntgenphasenanalyse bzw. isothermer Wärmeleitungskalorimetrie erfasst. Zusätzlich wurde Elektronenmikroskopie zur Beschreibung der Mikrostrukturen und energiedispersive Röntgenspektroskopie zur qualitativen Bestimmung von niedrig konzentrierten Hydratphasen eingesetzt. Die Veränderungen der Komposition des Zementporenwassers in Gegenwart schwindreduzierender Zusatzmittel wurden analysiert. Die spezifische Adsorption schwindreduzierender Zusatzmittel an Zementhydraten wurde an hydratisierendem Zement als auch an synthetischen Hydratphasen untersucht. 12. Der Mechanismus der Auslaugung schwindreduzierender Zusatzmittel wurde in Standtests untersucht, während praxisnahe Konditionen mittels zyklischer Auslaugung und Trocknung in Langzeittests simuliert wurden. 13. Die Beschreibung der hygrischen Eigenschaften von Zementstein und Mörteln erfolgte anhand von Schwind- und Desorptionsisothermen. Basierend auf thermodynamischen Ansätzen wurden unter Verwendung dieser Schwind- und Desorptionsisothermen Energiebilanzen erstellt, die eine Unterscheidung zwischen Verformungsenergie und Energie zur Erzeugung von Oberfläche im Trocknungsprozess zementärer Baustoffe zulassen und somit eine Abgrenzung der Einflussnahme von Schwindreduzierern auf diese spezifische Energieverteilung ermöglichen. Im Wesentlichen erzielte Ergebnisse 14. Schwindreduzierende Betonzusatzmittel nehmen aufgrund ihrer amphiphilen Eigenschaften Einfluss auf den Hydratationsmechanismus von Portlandzementen. In Gegenwart dieser Zusatzmittel ist die Löslichkeit für anorganische Salze verringert. Die Konzentration von Calcium-, Kalium- und Sulfationen sinkt mit zunehmender Konzentration des Zusatzmittels. Während der Induktionsperiode der Portlandzementhydratation führt dies zur temporären Ausfällung von Calcium-Kalium-Sulfathydrat. Eine Veränderung des Hydratphasenbestandes in Gegenwart von schwindreduzierenden Zusatzmitteln kann nicht signifikant unterschieden werden. Somit sind nachteilige Auswirkungen auf die Dauerhaftigkeit derartig modifizierter Betone aufgrund eines veränderten Hydratphasenbestandes nicht zu erwarten. 15. Die stark verzögernde Wirkung von Schwindreduzierern in Kombination mit polycarboxylat-basierten Fließmitteln beruht nicht auf der Adsorption des Schwindreduzierers am hydratisierenden Klinker. Vielmehr kann davon ausgegangen werden, dass die verminderte Löslichkeit für Salze in der Porenlösung den Reaktionsumsatz absenkt und/oder eine spezifische Adsorption des nicht-ionischen Tensides an Portlanditkeimen deren Wachstum hemmt und damit die Auflösung von silikatischen Klinkerphasen. 16. Schwindreduzierende Zusatzmittel weisen eine spezifische Adsorption an Portlandit auf, einem Nebenprodukt der Hydratationsreaktionen eines Hauptbestandteils von Portlandzement. Ein verstärktes Kristallwachstum von Portlandit in lateraler Dimension führt zu einer Zunahme der spezifischen Oberfläche des hydratisierten Zementsteines. Für nass nachbehandelte Zementsteine bedeutet dies eine Zunahme der Gelporosität auf Kosten der Kapillarporosität. Eine Einflussnahme auf die Gesamtporosität lässt sich nicht feststellen. 17. Die Zunahme der spezifischen Oberfläche von Zementstein in Gegenwart von Schwindreduzierern bewirkt eine verstärkte physikalische Adsorption von Zementporenwasser am Feststoff. Für Betone mit niedrigem w/z-Wert oder unzureichender Nachbehandlung kann dieser Prozess zu einer Reduktion des für die Hydratation verfügbaren Wassers führen und in einem vermindertem Hydratationsgrad resultieren. Dies könnte eine Ursache für die in der Literatur beschriebenen Einbußen bezüglich mechanischer Eigenschaften beim Einsatz von Schwindreduzieren sein. 18. Schwindreduzierer sind im hohen Maße auslaugbar. Jedoch zeigen zyklische Langzeittests, dass ein signifikanter Austrag des Zusatzmittels in vorwiegend trockener Exposition nicht zu erwarten ist. Die Nachhaltigkeit des Einsatzes dieser Zusatzmittel ist gegeben, wenn die Anwendung im Beton das Ziel der Reduktion des Trocknungsschwindens verfolgt. 19. Die schwindreduzierende Wirkung der nicht-ionischen Tenside beruht vorwiegend auf der Reduktion der Oberflächenspannung der Grenzfläche „flüssig/gasförmig“ des trocknenden Zementsteines. Inwieweit diese Oberflächenspannung durch das nicht-ionischeTensid herabgesetzt wird, ist von der Gesamtkonzentration im Allgemeinen und im Speziellen von der Konzentration des Tensides in der Oberfläche abhängig. Da im Zuge des Trocknens diese Grenzfläche wächst, kann bei gegebener Gesamtkonzentration des Zusatzmittels im Beton dessen Konzentration in der Grenzfläche sinken, woraufhin die Oberflächenspannung ansteigt und die Schwindreduktion sinkt. 20. Im Ergebnis dieser Arbeit ist es möglich, die Entwicklung sowohl der Oberfläche als auch ihrer Oberflächenspannung im Trocknungsprozess zu quantifizieren und diese Ergebnisse in einen einfachen konzeptionellen, thermodynamischen Ansatz zur Minimierung der freien Energie des trocknenden, zementären Porensystems zu überführen. Die Verwendung dieses konzeptionellen Ansatzes erlaubt es, den Wirkmechanismus schwindreduzierender Betonzusatzmittel zu beschreiben. N2 - Self Consolidating Concrete – a dream has come true!(?) Self Consolidating Concrete (SCC) is mainly characterised by its special rheological properties. With-out any vibration this concrete can be placed and compacted under its own weight, without segrega-tion or bleeding. The use of such concrete can increase the productivity on construction sites and en-able the use of a higher degree of well distributed reinforcement for thin walled structural members. This new technology also reduces health risks since in contrast to the traditional handling of concrete, the emission of noise and vibration are substantially decreased. The specific mix design for self consolidating concretes was introduced around the 1980s in Japan. In comparison to normal vibrated concrete an increased paste volume enables a good distribution of aggregates within the paste matrix, minimising the influence of aggregates friction on the concrete flow property. The introduction of inert and/or pozzolanic additives as part of the paste provides the required excess paste volume without using disproportionally high amounts of plain cement. Due to further developments of concrete admixtures such as superplasticizers, the cement paste can gain self levelling properties without causing segregation of aggregates. Whereas SCC differs from normal vibrated concrete in its fresh attributes, it should reach similar properties in the hardened state. Due to the increased paste volume it usually shows higher shrinkage. Furthermore, owing to strength requirements, SCC is often produced at low water to cement ratios and hence may additionally suffer from autogenous shrinkage. This means that cracking caused by drying or autogenous shrinkage is a real risk for SCC and can compromise its durability as cracks may serve as ingression paths for gases and salts or might permit leaching. For the time being SCC still exhibits increased shrinkage and cracking probability and hence may be discarded in many practical applications. This can be overcome by a better understanding of those mechanisms and the ways to mitigate them. It is a target of this thesis to contribute to this. How to cope with increased shrinkage of SCC? In general, engineers are facing severe problems related to shrinkage and cracking. Even for normal and high performance concrete, containing moderate amounts of binder, a lot of effort was put on counteracting shrinkage and avoiding cracking. For the time being these efforts resulted in the knowledge of how to distribute cracks rather to avoid them. The most efficient way to decrease shrinkage turned out to be to decrease the cement content of concrete down to a minimum but still sufficient amount. For SCC this obviously seems to be contradictory with the requirement of a high paste volume. Indeed, the potential for shrinkage reduction is limited to some small range modifications in the mix design following two major concepts. The first one is the reduction of the required paste volume by optimising the aggregate grading curve. The second one involves high volume substitution of cement, preferentially using inert mineral additives. The optimization of grading curves is limited by several severe practical issues. Problems start with the availability of sufficiently fractionated aggregates. Usually attempts fail because of the enormous effort in composing application-optimized grading curves or mix designs. Due to durability reasons, the substitution rate for cement is limited depending on the application purpose and on environmental exposure of the hardened concrete. In the early 1980s Shrinkage Reducing Admixtures (SRA) were introduced to counteract drying shrinkage of concrete. The first publications explicitly dealing with SRA go back to Goto and Sato (Japan). They were published in 1983, which is also the time when the SCC concept was introduced. SRA modified concretes showed a substantial reduction of free drying shrinkage contributing to crack prevention or at least a significant decrease of crack width in situations of restrained drying shrinkage. Will shrinkage reducing admixtures contribute to a broader application of SCC? Within the last three decades performance tests on several types of concrete proved the efficiency of shrinkage reducing admixtures. So, at least in terms of shrinkage and cracking, concretes in general and SCC in particular can benefit from SRA application. But "One man's meat is another man's poison" and with respect to long term performance of SRA modified concretes there are still several issues to be clarified. One of these concerns the impact of SRAs on cement hydration. It is therefore an issue to know if changes in the hydrated phase composition, induced by SRA, result in undesired properties or decreased durability. Another issue is that the long term shrinkage reduction has to be evaluated. For example, one can wonder if SRA leaching may diminish or even eliminate long term shrinkage reduction and if the release of admixtures could be a severe environmental issue. It should also be noted that the basic mechanism or physical impact of SRA as well as its implementation in recent models for shrinkage of concrete is still being discussed. The present thesis tries to shed light on the role of SRA in self consolidating concrete focusing on the three questions outlined above: basic mechanisms of cement hydration, physical impact on shrinkage and the sustainability of SRA-application. Which contributions result from this study? Based on an extensive patent search, commercial SRAs could be identified to be synergistic mixtures of non-ionic surfactants and glycols. This turns out to be most important information for more than one reason and is the subject of chapter 4. An abundant literature focuses on properties of these non-ionic surfactants. Moreover, from this rich pool of information, the behaviour of SRAs and their interactions in cementitious systems were better understood through this thesis. For example, it could be anticipated how SRAs behave in strong electrolytes and how surface activity, i.e. surface tension, and interparticle forces might be affected. The synergy effect regarding enhanced performance induced by the presence of additional glycol in SRAs could be derived from the literature on the co-surfactant nature of glycols. Generally it now can be said that glycols ensure that the non-ionic surfactant is properly distributed onto the paste interfaces to efficiently reduce surface tension. In literature, the impact of organic matter on cement hydration was extensively studied for other admixtures like superplasticizer. From there, main impact factors related to the nature of these molecules could be identified. In addition, here again, the literature on non-ionic surfactants provides sufficient information to anticipate possible interactions of SRA with cement hydration based on the nature of non-ionic surfactants. All in all, the extensive study on the nature of non-ionic surfactants, presented in chapter 4, provides fundamental understanding of the behaviour of SRAs in cement paste. Taking a step further to relate this to the impact on drying and shrinkage required to review recent models for drying and shrinkage of cement paste as presented in chapter 3. There, it is shown that macroscopic thermodynamics of the open pore systems can be successfully applied to predict drying induced deformation, but that surface activity of SRA still has to be implemented to explain the shrinkage reduction it causes. Because of severe issues concerning the importance of capillary pressure on shrinkage, a new macroscopic thermodynamic model was derived in a way that meets requirements to properly incorporate surface activity of SRA. This is the subject of chapter 5. Based on theoretical considerations, in chapter 5 the broader impact of SRA on drying cementitious matter could be outlined. In a next step, cement paste was treated as a deformable, open drying pore system. Thereby, the drying phenomena of SRA modified mortars and concrete observed by other authors could be retrieved. This phenomenological consistency of the model constitutes an important contribution towards the understanding of SRA mechanisms. Another main contribution of this work came from introducing an artificial pore system, denominated the normcube. Using this model system, it could be shown how the evolution of interfacial area and its properties interact in presence of SRAs and how this impacts drying characteristics. In chapter 7, the surface activity of commercial SRAs in aqueous solution and synthetic pore solution was investigated. This shows how the electrolyte concentration of synthetic pore solution impacts the phase behaviour of SRA and conversely, how the presence of SRA impacts the aqueous electrolyte solution. Whilst electrolytes enhance self-aggregation of SRAs into micelles and liquid crystals, the presence of SRAs leads to precipitation of minerals as syngenite and mirabilite. Moreover, electrolyte solutions containing SRAs comprise limited miscibility or rather show miscibility gaps, where the liquid separates into isotropic micellar solutions and surfactant rich reverse micellar solutions. The investigation of surface activity and phase behaviour of SRA unravelled another important contribution. From macroscopic surface tension measurements, a relationship between excess surface concentration of SRA, bulk concentration of SRA and exposed interfacial area could be derived. Based on this, it is now possible to predict the actual surface tension of the pore fluid in the course of drying once the evolution of internal interfacial area is known. This is used later in this thesis to describe the specific drying and shrinkage behaviour of SRA modified pastes and mortars. Calorimetric studies on normal Portland cement and composite binders revealed that SRA alone show only minor impact on hydration kinetics. In presence of superplasticizer however the cement hydration can be significantly decelerated. The delaying impact of SRA could be related to a selective deceleration of silicate phase hydration. Moreover, it could be shown that portlandite precipitation in presence of SRA is changed, turning the compact habitus into more or less layered structures. Thereby, the specific surface increases, causing the amount of physically bound water to increase, which in turn reduces the maximum degree of hydration achievable for sealed systems. Extensive phase analysis shows that the hydrated phase composition of SRA modified binders re-mains almost unaffected. The appearance of a temporary mineral phase could be detected by environmental scanning electron microscopy. As could be shown for synthetic pore solutions, syngenite precipitates during early hydration stages and is later consumed in the course of aluminate hydration, i.e. when sulphates are depleted. Moreover, for some SRAs, the salting out phenomena supposed to be enhanced in strong electrolytes could also be shown to take place. The resulting organic precipitates could be identified by SEM-EDX in cement paste and by X-ray diffraction on solid residues of synthetic pore solution. The presence of SRAs could also be identified to impact microstructure of well cured cement paste. Based on nitrogen adsorption measurements and mercury intrusion porosimetry the amount of small pores is seen to increase with SRA dosage, whilst the overall porosity remains unchanged. The question regarding sustainability of SRA application is the subject of chapter 10. By means of leaching studies it could be shown that SRA can be leached significantly. The mechanism could be identified as a diffusion process and a range of effective diffusion coefficients could be estimated. Thereby, the leaching of SRA can now be estimated for real structural members. However, while the admixture can be leached to high extents in tank tests, the leaching rates in practical applications can be assumed to be low because of much reduced contact with water. This could be proven by quantifying admixture loss during long term drying and rewetting cycles. Despite a loss of admixture shrinkage reduction is hardly impacted. Moreover, the cyclic tests revealed that the total deformations in presence of SRA remain low due to a lower extent of irreversibly shrinkage deformations. Another important contribution towards the better understanding of the working mechanism of SRA for drying and shrinkage came from the same leaching tests. A significant fraction of SRA is found to be immobile and does not diffuse in leaching. This fraction of SRA is probably strongly associated to cement phases as the calcium-silicate-hydrates or portlandite. Based on these findings, it is now also possible to quantify the amount of admixture active at the interfaces. This means that, the evolution of surface tension in the course of drying can be approximated, which is a fundamental requirement for modeling shrinkage in presence of SRA. The last experimental chapter of this study focuses on the working mechanism and impact of SRA on drying and shrinkage. Based on the thermodynamics of the open deformable pore system introduced in chapter 5, energy balances are set up using desorption and shrinkage isotherms of actual samples. Information on distribution of SRA in the hydrated paste is used to estimate the actual surface tensions of the pore solution. In other words, this is the first time that the surface activity of the SRA in the course of the drying is fully accounted for. From the energy balances the evolution and properties of the internal interface are then obtained. This made it possible to explain why SRAs impact drying and shrinkage and in what specific range of relative humidity they are active. Summarising the findings of this thesis it can be said that the understanding of the impact of SRAs on hydration, drying and shrinkage was brought forward. Many of the new insights came from the careful investigation of the theory of non-ionic surfactants, something that the cement community had generally overlooked up to now. T2 - Zur Wirkungsweise schwindreduzierender Zusatzmittel in selbstverdichtenden Mörteln und Betonen KW - Schwinden KW - Bauchemie KW - Betonzusatzmittel KW - schwindreduzierendes Zusatzmittel KW - Zementhydratation KW - Schwindreduktion KW - Schwindmechanismus KW - Schwindisotherme KW - Sorptionsisotherme KW - shrinkage KW - shrinkage reduction KW - crack mitigation KW - construction chemicals KW - shrinkage reducing admixtures KW - shrinkage reducing agents Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20110620-15491 UR - http://www.shaker.eu/en/content/catalogue/index.asp?lang=de&ID=8&ISBN=978-3-8440-0027-6 SN - 978-3-8440-0027-6 ER - TY - THES A1 - Ehrhardt, Dirk T1 - ZUM EINFLUSS DER NACHBEHANDLUNG AUF DIE GEFÜGEAUSBILDUNG UND DEN FROST-TAUMITTELWIDERSTAND DER BETONRANDZONE N2 - Die Festigkeitsentwicklung des Zementbetons basiert auf der chemischen Reaktion des Zementes mit dem Anmachwasser. Durch Nachbehandlungsmaßnahmen muss dafür gesorgt werden, dass dem Zement genügend Wasser für seine Reaktion zur Verfügung steht, da sonst ein Beton mit minderer Qualität entsteht. Die vorliegende Arbeit behandelt die grundsätzlichen Fragen der Betonnachbehandlung bei Anwendung von Straßenbetonen. Im Speziellen wird die Frage des erforderlichen Nachbehandlungsbedarfs von hüttensandhaltigen Kompositzementen betrachtet. Die Wirkung der Nachbehandlung wird anhand des erreichten Frost-Tausalz-Widerstandes und der Gefügeausbildung in der unmittelbaren Betonrandzone bewertet. Der Fokus der Untersuchungen lag auf abgezogenen Betonoberflächen. Es wurde ein Modell zur Austrocknung des jungen Betons erarbeitet. Es konnte gezeigt werden, dass in einer frühen Austrocknung (Kapillarphase) keine kritische Austrocknung der Betonrandzone einsetzt, sondern der Beton annährend gleichmäßig über die Höhe austrocknet. Es wurde ein Nomogramm entwickelt, mit dem die Dauer der Kapillarphase in Abhängigkeit der Witterung für Straßenbetone abgeschätzt werden kann. Eine kritische Austrocknung der wichtigen Randzone setzt nach Ende der Kapillarphase ein. Für Betone unter Verwendung von Zementen mit langsamer Festigkeitsentwicklung ist die Austrocknung der Randzone nach Ende der Kapillarphase besonders ausgeprägt. Im Ergebnis zeigen diese Betone dann einen geringen Frost-Tausalz-Widerstand. Mit Zementen, die eine 2d-Zementdruckfestigkeit ≥ 23,0 N/mm² aufweisen, wurde unabhängig von der Zementart (CEM I oder CEM II/B-S) auch dann ein hoher Frost-Tausalz-Widerstand erreicht, wenn keine oder eine schlechtere Nachbehandlung angewendet wurde. Für die Praxis ergibt sich damit eine einfache Möglichkeit der Vorauswahl von geeigneten Zementen für den Verkehrsflächenbau. Betone, die unter Verwendung von Zementen mit langsamere Festigkeitsentwicklung hergestellt werden, erreichen einen hohen Frost-Tausalz-Widerstand nur mit einer geeigneten Nachbehandlung. Die Anwendung von flüssigen Nachbehandlungsmitteln (NBM gemäß TL NBM-StB) erreicht eine ähnliche Wirksamkeit wie eine 5 tägige Feuchtnachbehandlung. Voraussetzung für die Wirksamkeit der NBM ist, dass sie auf eine Betonoberfläche ohne sichtbaren Feuchtigkeitsfilm (feuchter Glanz) aufgesprüht werden. Besonders wichtig ist die Beachtung des richtigen Auftragszeitpunktes bei kühler Witterung, da hier aufgrund der verlangsamten Zementreaktion der Beton länger Anmachwasser abstößt. Ein zu früher Auftrag des Nachbehandlungsmittels führt zu einer Verschlechterung der Qualität der Betonrandzone. Durch Bereitstellung hydratationsabhängiger Transportkenngrößen (Feuchtetransport im Beton) konnten numerische Berechnungen zum Zusammenspiel zwischen der Austrocknung, der Nachbehandlung und der Gefügeentwicklung durchgeführt werden. Mit dem erstellten Berechnungsmodell wurden Parameterstudien durchgeführt. Die Berechnungen bestätigen die wesentlichen Erkenntnisse der Laboruntersuchungen. Darüber hinaus lässt sich mit dem Berechnungsmodell zeigen, dass gerade bei langsam reagierenden Zementen und kühler Witterung ohne eine Nachbehandlung eine sehr dünne Randzone (ca. 500 µm – 1000 µm) mit stark erhöhter Kapillarporosität entsteht. N2 - The hardening of cement concrete is based on the chemical reaction of cement and water. Therefore, the ensuring of sufficient amount of water in concrete is essential. All these measures are referred as curing of concrete. This dissertation provides a basic consideration of curing of concrete for concrete pavements. In this regard the using of cements with slow strength development, e.g. cements with blast furnace slag is the main topic. The effectiveness of curing was evaluated on the basis of the freeze-thaw de-icing resistance and the microstructure of hardened outer concrete surface. Concrete surfaces with textured mortar are on the focus. The results were used to develope a model of the drying of young concrete. It could be shown, that the outer concrete surface does not dry during the first drying phase (called capillary phase). Instead the concrete is drying evenly over the high of the concrete sample during the capillary drying phase. A fast drying of the outer concrete surface only takes place after the capillary drying phase. Based on all results a nomogram (for road concrete) was created for an estimation of the duration of the capillary drying phase. If there is no curing after the capillary drying phase the concrete with use of slowly reacting cement has a great risk for a harmful drying of outer concrete surface. In this case such a concrete shows a very poor freeze thaw de-icing resistance. By using cements with a 2 day-compressive strength ≥ 23,0 N/mm² a good freeze thaw de-icing resistance could assure, despite no or a poor curing was applied. This criterion can be used to estimate the usability of cements with granulated blast furnace slag when a great freeze thaw de-icing resistance is essential. There could also be used a cement with lower 2 day-compressive strength. In this case a good curing has to be assured. Spraying of liquid curing compounds according to TL NBM-StB is suitable for curing concrete pavements. The curing compound should not be sprayed on a concrete surface with any visible water film. The effectiveness of curing compounds is equal to a five days long wet curing in consideration of applying the curing compound at the right time. Otherwise there is some negative influence when the spraying of curing compounds starts too early. Consideration about the right application time of curing compounds is more important for low temperatures because the concrete bleeds much longer due to the slower cement reaction at low temperatures. It was possible to create a numerical model which accounts the interaction between drying, curing and development of microstructure by providing hydration dependent transport parameters (water transport in concrete). The model was used for a parameter study. It could be shown that the combination of cements with slow strength development and low ambient temperatures leads to a thin surface zone (500 µm – 1000 µm) with very high capillary porosity. KW - Beton KW - Zement KW - Nachbehandlung KW - Modellbildung KW - Nachbehandlungsmittel KW - Straßenbeton KW - Frost-Tausalz-Widerstand KW - curing compounds KW - concrete pavements Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20171120-36889 ER - TY - THES A1 - Flohr, Alexander T1 - Der Einfluss von Polymermodifikationen, unterschiedlichen Gesteinskörnungen und Gesteinskörnungssubstitutionsmaterial auf das Verformungs- und Bruchverhalten von Beton N2 - In dieser Arbeit werden die Ergebnisse von experimentellen Untersuchungen an unbewehrten und bewehrten modifizierten Betonen unter monoton steigender Belastung bis zum Bruch, einfacher Kurzzeitbelastung im Grenzbereich der Tragfähigkeit und mehrfach wiederholter Belastung mit kontinuierlicher Be- und Entlastungsgeschwindigkeit vorgestellt und ausgewertet. Für die Modifizierung der Betone wurden zwei grundsätzliche Vorgehens¬weisen angewendet: die Variation der Gesteinskörnung und die Modifizierung der Bindemittelphase mit thermoplastischen Polymeren. Die Auswirkungen der Modifikationen auf die Festigkeitseigenschaften und das Formänderungsverhalten des Betons bei Kurzzeitbelastung waren dabei von besonderem Interesse. Die beobachteten Veränderungen der Festbetoneigenschaften sowie der nichtlineare Zu-sammenhang zwischen den elastischen und nichtelastischen Verformungsanteilen signali-sieren, dass derartige Modifizierungen das Verformungs- und Bruchverhalten von Beton sig-nifikant beeinflussen und somit beim Nachweis der Tragfähigkeit und Gebrauchstauglichkeit berücksichtigt werden müssen. Neben der Evaluierung des beanspruchungsabhängigen Formänderungsverhaltens werden die etablierten Ansätze zur Beschreibung der Gefügezu-standsbereiche bei Druckbelastung weiter entwickelt, so dass die Übergänge zwischen den Bereichen exakt ermittelt und die Ausprägung der Bereiche quantifiziert werden können. Damit ist ein genauerer Vergleich der durch die Modifizierungen hervorgerufenen Verände-rungen möglich. N2 - The results of experimental investigations of unreinforced and reinforced modified concrete under monotonically increasing load until fracture, simple short-term load at the limit of capa-city and repeated load with continuous loading and release rate are introduced in the pre-sented thesis. The modification of the concretes was approached in two ways: the variation of the aggregates and the modification of the binder phase with thermoplastic polymers. Of particular interest were the effects of the modifications on the strength properties and the deformation behavior under short-term load. The observed changes in the hardened concrete properties and the non-linear relation be-tween the elastic and inelastic proportions of deformation indicate that such modifications affect the deformation and fracture behavior of concrete significantly. Therefore they have to be accounted for the analysis of capacity and suitability. In addition to the evaluation of the load-dependent deformation behavior, the established approaches to describe the structural state areas are developed further. Therewith, the transitions between the areas can be de-termined accurately and the dimension of the areas can be quantified. As a result the chang-es caused by modifications could be compared more precisely. KW - Beton KW - Polymermodifizierter Beton KW - Concrete KW - Gesteinskörnung KW - Gesteinskörnungssubstitutionsmaterial KW - Lastverformungsverhalten KW - Bruchverhalten KW - Druckbelastung KW - Zugbelastung KW - Biegezugbelastung KW - Polymermodified Cement Concrete KW - aggregates KW - deformation behavior Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20130806-20035 ER - TY - THES A1 - Giebson, Colin T1 - Die Alkali-Kieselsäure-Reaktion in Beton für Fahrbahndecken und Flugbetriebsflächen unter Einwirkung alkalihaltiger Enteisungsmittel N2 - Das Hauptziel der Arbeit war es zu klären, ob alkalihaltige Enteisungsmittel eine Alkali-Kieselsäure-Reaktion (AKR) auslösen und/oder beschleunigen können und was die dabei ggf. zugrunde liegenden Mechanismen sind. Die Untersuchungen dazu ergaben, dass die auf Verkehrsflächen eingesetzten alkalihaltigen Enteisungsmittel auf Basis von Natriumchlorid (Fahrbahndecken) bzw. auf Basis der Alkaliacetate und -formiate (Flugbetriebsflächen) den Ablauf einer AKR in Betonen mit alkalireaktiven Gesteinskörnungen auslösen und mitunter stark beschleunigen können. Dabei nimmt die AKR-fördernde Wirkung der Enteisungsmittel in der Reihenfolge Natriumchlorid - Alkaliacetate - Alkaliformiate erheblich zu. Es zeigte sich, dass im Fall der Alkaliacetate und -formiate nicht allein die Zufuhr von Alkalien von Bedeutung ist, sondern dass es außerdem zu einer Freisetzung von OH-Ionen aus dem Portlandit und folglich zu einem Anstieg des pH-Wertes in der Porenlösung kommt. Dadurch wird der Angriff auf alkalireaktives SiO2 in Gesteinskörnungen verstärkt und der Ablauf einer AKR beschleunigt. Unter äußerer NaCl-Zufuhr kommt es hingegen nicht zu einem Anstieg des pH-Wertes, was der Grund für die weniger stark AKR-fördernde Wirkung von NaCl ist. Von Bedeutung sind hier die zugeführten Na-Ionen und offenbar ein sich andeutender, direkter Einfluss von NaCl auf das SiO2-Löseverhalten. Sind pH-Wert und Na-Konzentration in der Porenlösung ausreichend hoch, wird sich thermodynamisch bedingt AKR-Gel bilden. Die Bildung von FRIEDEL’schem Salz ist dabei nur eine Begleiterscheinung, aber keine Voraussetzung für den Ablauf einer AKR unter äußerer NaCl-Zufuhr. Es zeigte sich weiter, dass sich mit der FIB-Klimawechsellagerung als Performance-Prüfung das AKR-Schädigungspotential von Betonen für Fahrbahndecken und Flugbetriebsflächen zuverlässig beurteilen lässt. Die Vorteile der FIB-Klimawechsellagerung liegen in der Prüfung kompletter, projektspezifischer Betonzusammensetzungen unter Beachtung aller praxisrelevanten klimatischen Einwirkungen und vor allem in der Berücksichtigung einer äußeren Alkalizufuhr. Innerhalb von 36 Wochen kann das AKR-Schädigungspotential einer Betonzusammensetzung für eine Nutzungsdauer von 20-30 Jahren in der Praxis sicher beurteilt werden. N2 - The primary objective of this thesis was to elucidate whether alkali-containing deicers are able to trigger and/or to accelerate an alkali-silica reaction (ASR) in concrete and, if so, what the reaction mechanisms are. The investigations showed that alkali-containing deicers used for highway (sodium chloride) and airfield (alkali acetates/formates) pavements are able to trigger and highly accelerate ASR in concrete with alkali-reactive aggregates. The aggressiveness of the deicers increases in the order sodium chloride – alkali acetates – alkali formates. The results indicate that in case of the alkali acetates and formates it is not just an issue of the alkalis but also of an additional release of OH-ions from portlandite, resulting in an increase of the pH in the concrete pore solution. Hence, the attack on silica in alkali-reactive aggregates is intensified and the ASR can be highly accelerated. For sodium chloride, however, it was evident that there is not an increase of the pH what is the decisive reason for its less severe impact on the ASR. Vitally important is the excess supply of Na-ions together with clear indications that sodium chloride is able to influence the dissolution behaviour of silica directly. Thermodynamically driven, ASR-gel will form if the pH and the Na-concentration are sufficiently high. The formation of chloroaluminates like FRIEDEL’s salt is thus rather an accompanying than a required reaction for an ASR. It could be shown furthermore that the cyclic climate storage as a performance test is able to assess the ASR potential of concrete mixtures for highway and airfield pavements reliably. The advantages of the cyclic climate storage are to test project specific concrete compositions, i.e. job mixtures, under extensively realistic conditions, including the impact of alkali-containing deicers. Within 36 weeks, it is possible to safely predict the ASR potential of the mixtures for a service life of 20-30 years. KW - Beton KW - Alkali-Kieselsäure-Reaktion KW - Alkali-Kieselsäure-Reaktion; Fahrbahndecken; Flugbetriebsflächen; äußere Alkalizufuhr; Enteisungsmittel; Natriumchlorid; Alkaliacetate; Alkaliformiate; AKR-Performance-Prüfung; FIB-Klimawechsellagerung KW - alkali-silica reaction; pavements; external alkalis; deicer; sodium chloride; alkali acetates; alkali formates; ASR performance test; cyclic climate storage Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20131217-20916 SN - 978-3-00-044366-4 (Druckversion) ER - TY - CHAP A1 - Gründel, Hendrik A1 - Ludwig, Horst-Michael A1 - Geisenhanslüke, Carsten A1 - Müller, Matthias T1 - Einfluss der Zusammensetzung von Portlandzementklinker und Sulfatträger auf das Erstarrungsverhalten von Spritzbeton T2 - Tagungsband 19. Ibausil - 19. Internationale Baustofftagung : 16.-18. September 2015, Weimar N2 - In der vorliegenden Studie wurde der Einfluss der Klinkerzusammensetzung sowie der Sulfatträgerart auf die Leistungsfähigkeit eines Spritzzementes untersucht. Um eine Untersulfatisierung im System mit einen Aluminiumsulfat / -hydroxid Beschleuniger zu vermeiden, sollte ein anhydritbasierter Sulfatträger eingesetzt werden. Dies führt zu einer besseren Festigkeitsentwicklung im jungen Alter. N2 - In the present study, the influence of the clinker composition as well as the setting agent type on the performance of a sprayed cement was investigated. To avoid undersulfatization in the system with an aluminum sulfate/hydroxide accelerator, an anhydrite-based setting agent should be used. This leads to a better strength development at a young age. KW - Beton KW - Spritzbeton KW - Zement KW - Spritzbeton KW - Spritzzement KW - Sulfatträger KW - Sprayed concrete KW - Setting agent Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20240507-48851 SN - 978-3-00-050225-5 (Bauhaus-Universitätsverlag Weimar) ER - TY - JOUR A1 - Jiang, Mingze A1 - Rößler, Christiane A1 - Wellmann, Eva A1 - Klaver, Jop A1 - Kleiner, Florian A1 - Schmatz, Joyce T1 - Workflow for high-resolution phase segmentation of cement clinker fromcombined BSE image and EDX spectral data JF - Journal of Microscopy N2 - Burning of clinker is the most influencing step of cement quality during the production process. Appropriate characterisation for quality control and decision-making is therefore the critical point to maintain a stable production but also for the development of alternative cements. Scanning electron microscopy (SEM) in combination with energy dispersive X-ray spectroscopy (EDX) delivers spatially resolved phase and chemical information for cement clinker. This data can be used to quantify phase fractions and chemical composition of identified phases. The contribution aims to provide an overview of phase fraction quantification by semi-automatic phase segmentation using high-resolution backscattered electron (BSE) images and lower-resolved EDX element maps. Therefore, a tool for image analysis was developed that uses state-of-the-art algorithms for pixel-wise image segmentation and labelling in combination with a decision tree that allows searching for specific clinker phases. Results show that this tool can be applied to segment sub-micron scale clinker phases and to get a quantification of all phase fractions. In addition, statistical evaluation of the data is implemented within the tool to reveal whether the imaged area is representative for all clinker phases. KW - Zementklinker KW - Bildsegmentierung KW - Rasterelektronenmikroskopie KW - cement clinker KW - image segmentation KW - EDX KW - superpixel Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20211215-45449 UR - https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13072 VL - 2021 SP - 1 EP - 7 PB - Wiley-Blackwell CY - Oxford ER - TY - JOUR A1 - Kaps, Christian A1 - Schuch, Kai A1 - Stäblein, Stefan T1 - Silicate coatings for concrete components with waterglass systems by means of neutral salt initiation N2 - The objective of the investigations was the proof of the use of the neutral salt initiation as a construction material in the protecting silicate coating of concrete components, e.g. factory finished parts or reinforced concrete construction parts, by means of waterglass fused silica suspensions KW - Silicate KW - Coating KW - Wasserglas KW - Aggregation KW - Bindemittel KW - Waterglass KW - Alkalisilicate KW - Coating KW - Wasserglas KW - Sol-Gel Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20160601-25888 SP - 1 EP - 14 ER - TY - JOUR A1 - Kleiner, Florian T1 - Optimization and semi-automatic evaluation of a frosting process for a soda lime silicate glass based on phosphoric acid JF - International Journal of Applied Glass Science N2 - Chemical glass frosting processes are widely used to create visual attractive glass surfaces. A commonly used frosting bath mainly contains ammonium bifluoride (NH4HF2) mixed with hydrochloric acid (HCl). The frosting process consists of several baths. Firstly, the preliminary bath to clean the object. Secondly, the frosting bath which etches the rough light scattering structure into the glass surface. Finally, the washing baths to clean the frosted object. This is where the constituents of the preceding steps accumulate and have to be filtered from the sewage. In the present contribution, phosphoric acid (H3PO4) was used as a substitute for HCl to reduce the amount of ammonium (NH4+) and chloride (Cl−) dissolved in the waste water. In combination with magnesium carbonate (MgCO3), it allows the precipitation of ammonium within the sewage as ammonium magnesium phosphate (MgNH4PO4). However, a trivial replacement of HCl by H3PO4 within the frosting process causes extensive frosting errors, such as inhomogeneous size distributions of the structures or domains that are not fully covered by these structures. By modifying the preliminary bath composition, it was possible to improve the frosting result considerably. To determine the optimal composition of the preliminary bath, a semi-automatic evaluation method has been developed. This method renders the objective comparison of the resulting surface quality possible. KW - Silicatglas KW - Mattieren KW - Ätzen KW - automated quality control KW - etching KW - glass frosting KW - phosphoric acid Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210701-44548 UR - https://ceramics.onlinelibrary.wiley.com/doi/10.1111/ijag.15866 SP - 1 EP - 8 PB - John Wiley & Sons ER - TY - GEN A1 - Kleiner, Florian T1 - Charakterisierung des Einflusses der Wärmeleitfähigkeit von Kompositmaterialien auf die thermochemische Wärmespeicherung N2 - Mit dem stetigen Steigen des Anteils an erneuerbaren Energien wird der Einsatz von Speichern immer bedeutsamer. Neben der Speicherung elektrischer Energie ist die Speicherung anfallender solarer bzw. industrieller Wärme eine wichtige Herausforderung. Aufgrund der hohen Energiespeicherdichte kommt dabei der thermochemischen Wärmespeicherung eine entscheidende Rolle zu. Eine Klasse dieser Speichermaterialien bilden Kompositmaterialien, die aus einer offenporigen Matrix und einem darin eingelagerten Salzhydrat bestehen. Ausschlaggebend für eine hohe Speicherdichte ist bei dieser Materialklasse der schnelle Abtransport der durch Wasserdampfsorption entstandenen Wärme. Das entscheidende Kriterium für eine Anwendung als Speichermaterial ist somit die Wärmeleitfähigkeit des Materials. Im Rahmen der Arbeit wurden deshalb die Wärmeleitfähigkeiten ausgewählter Salze (NaCl, MgSO4 und ZnSO4) mit verschiedenen Kristallwassergehalten, Trägermaterialien wie Aktivkohle (Pellets und Pulver) und Zeolitpulver und an den daraus hergestellten Kompositmaterialien untersucht. Ziel war es außerdem Aussagen zu einer günstigen Materialkombination aus offenporigem Trägermaterial und Salzhydrat sowie eines geeigneten Porenfüllgrades zu treffen und Ansätze für die Modellierung der Wärmeleitfähigkeit der Komposite zu liefern. N2 - With the steady increase of renewable energies, the use of storage systems is becoming increasingly important. In addition to the storage of electrical energy, the storage of solar and industrial heat is an important challenge. Due to their high energy storage density, thermochemical heat storage materials are very promising. One class of these storage materials are composit materials, which consist of an porous matrix and an embedded salt hydrate. The decisive factor for a high storage density in this type of materials is the rapid removal of the heat generated by water vapor sorption. The decisive criterion for an application as a storage material is therefore the thermal conductivity of the material. The thermal conductivity of selected salts (NaCl, MgSO4 and ZnSO4) with different crystal water contents, carrier materials such as activated carbon (pellets and powder) and zeolite powder and the resulting composite materials were therefore investigated as part of the work. The aim was also to make statements on a favorable material combination of porous carrier material and salt hydrate as well as a suitable degree of pore filling and to provide approaches for modeling the thermal conductivity of the composites. KW - Wärmespeicher KW - Wärmeleitfähigkeit KW - Werkstoffkunde KW - Wärmespeicher KW - Wärmeleitfähigkeit KW - Hydratsalz KW - thermochemische Wärmespeicherung KW - thermochemical heat storage Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20210921-44968 ER -