TY - CHAP A1 - Leipold, Mathias A1 - Schwarz, Jochen ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - MODELING TECHNIQUES FOR RC-FRAME SYSTEMS WITH INFILLS N2 - There are many different approaches to simulate the mechanical behavior of RC−Frames with masonry infills. In this paper, selected modeling techniques for masonry infills and reinforced concrete frame members will be discussed − stressing the attention on the damaging effects of the individual members and the entire system under quasi−static horizontal loading. The effect of the infill walls on the surrounding frame members is studied using equivalent strut elements. The implemented model consider in−plane failure modes for the infills, such as bed joint sliding and corner crushing. These frame member models differ with respect to their stress state. Finally, examples are provided and compared with experimental data from a real size test executed on a three story RC−Frame with and without infills. The quality of the model is evaluated on the basis of load−displacement relationships as well as damage progression. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28684 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Wudtke, Idna A1 - Werner, Frank ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - MODELLING OF MATERIAL PHENOMENA OF STEEL IN CONSTITUTIVE RELATIONS IN CONTEXT OF WELDING N2 - The application of partly decoupled approach by means of continuum mechanics facilitates the calculation of structural responses due to welding. The numerical results demonstrate the ability of a qualitative prediction of welded connections. As it is intended to integrate the local effects of a joint in structural analysis of steel constructions, it is necessary to meet higher approaches towards quality. The wide array of material parameters are presented, which are affecting the thermal, metallurgical and mechanical behavior, and which have to be identified. For that purpose further investigations are necessary to analyze the sensitivity of the models towards different material properties. The experimental determination of every material parameter is not possible due to the extraordinary laborious efforts needed. Besides that, experimentally identified parameters can be applied only for the tested steel quality for measured temperature-time regimes. For that reason alternative approaches for identification of material parameters, such as optimization strategies, have to be applied. After a definition of material parameters a quantitative prediction of welded connections will also be possible. Numerical results show the effect of phase transformation, activated by welding process, on residual stress state. As these phenomena occur in local areas in the range of crystal and grain sizes, the description of microscopic phenomena and their propagation on a macroscopic level due to approaches of homogenization might be expedient. Nevertheless, one should bear in mind, the increasing number of material parameters as well as the complexity of their experimental determination. Thus the microscopic approach should always be investigated under the scope of ability and efficiency of a required prediction. Under certain circumstances a step backwards, adopting a phenomenological approach, also can be beneficial. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-29032 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Richter, Matthias A1 - Ilzig, Katrin A1 - Rudnicki, Andrzej ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - MODELS FOR THE BUS HEADWAY DISTRIBUTION IN THE FLOW BEHIND A TRAFFIC SIGNAL N2 - Several results concerning the distribution of the headway of busses in the flow behind a traffic signal are presented. In the main focus of interest is the description of analytical models, which are verified by the results of Monte-Carlo-Methods. The advantage of analytical models (verified, but not derived by simulation methods) is their flexibility with respect to possible generalizations. For instance, several random distributions of the flow incoming to the traffic signal can be compared. The attention will be directed at the question, how the primary headway H (analyzed in front of the traffic signal) is mapped to the headway H’ analyzed behind of the traffic signal and how the random distribution of H is mapped to that of H’. For the traffic flow in front of the traffic signal several models will be discussed. The first case considers the situation, that busses operate on a common lane with the individual motor car traffic and the traffic flow is saturated. In the second situation, busses operate on a separated bus lane. Moreover, a mixed situation is discussed to model as close to reality as possible. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28521 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Huhnt, Wolfgang A1 - Richter, Sven ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - Modification Management for Planning and Construction Processes N2 - Planning and construction processes are characterized by the peculiarity that they need to be designed individually for each project. It is necessary to set up an individual schedule for each project. As a basis for a new project, schedules from already finished projects are used, but adaptions are always necessary. In practice, scheduling tools only document a process. Schedules cover a set of activities, their duration and a set of interdependencies between activities. The design of a process is up to the user. It is not necessary to specify each interdependency, and completeness and correctness need to be checked manually. No methodologies are available to guarantee properties such as correctness or completeness. The considerations presented in the paper are based on an approach where a planning and a construction process including the interdependencies between planning and construction activities are regarded as a result. Selected information need to be specified by a user, and a proposal for an order of planning and construction activities is computed. As a consequence, process properties such as correctness and completeness can be guaranteed with respect to user input. Especially in Germany, clients are allowed to modify their requirements at any time. This leads to modifications in the planning and construction processes. This paper covers a mathematical formulation for this problem based on set theory. A complex structure is set up covering objects and relations; and operations are defined that guarantee consistency in the underlying and versioned process description. The presented considerations are based on previous work. This paper can be regarded as the next step in a series of previous work describing how a suitable concept for handling, planning and construction processes in civil engineering can be formed. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28510 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Le, Hanh Quang A1 - Rüppel, Uwe ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - MULTI-SITE CONSTRUCTION PROJECT SCHEDULING CONSIDERING RESOURCE MOVING TIME IN DEVELOPING COUNTRIES N2 - Under the booming construction demands in developing countries, particularly in Vietnam situation, construction contractors often perform multiple concurrent projects in different places. In construction project scheduling processes, the existing scheduling methods often assume the resource moving time between activities/projects to be negligible. When multiple projects are deployed in different places and far from each other, this assumption has many shortcomings for properly modelling the real-world constraints. Especially, with respect to developing countries such as the Vietnam which contains transportation systems that are still in backward and low technical standards. This paper proposes a new algorithm named Multi-Site Construction Project Scheduling - MCOPS. The objective of this algorithm is to solve the problem of minimising multi-site construction project duration under limited available conditions of renewable resources (labour, machines and equipment) combining with the moving time of required resource among activities/projects. Additionally, in order to mitigate the impact of resource moving time into the multi-site project duration, this paper proposed a new priority rule: Minimum Resource Moving Time (MinRMT). The MinRMT is applied to rank the finished activities according to a priority order, to support the released resources to the scheduling activities. In order to investigate the impact of the resource moving time among activities during the scheduling process, computational experimentation was implemented. The results of the MCOPS-based computational experiments showed that, the resource moving time among projects has significantly impacted the multi-site project durations and this amount of time can not be ignored in the multi-site project scheduling process. Besides, the efficient application of the MinRMT is also demonstrated through the achieved results of the computational experiment in this paper. Though the efforts in this paper are based on the Vietnamese construction conditions, the proposed method can be usefully applied in other developing countries which have similar construction conditions. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28671 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Kunoth, Angela ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - MULTISCALE ANALYSIS OF MULTIVARIATE DATA N2 - For many applications, nonuniformly distributed functional data is given which lead to large–scale scattered data problems. We wish to represent the data in terms of a sparse representation with a minimal amount of degrees of freedom. For this, an adaptive scheme which operates in a coarse-to-fine fashion using a multiscale basis is proposed. Specifically, we investigate hierarchical bases using B-splines and spline-(pre)wavelets. At each stage a leastsquares approximation of the data is computed. We take into account different requests arising in large-scale scattered data fitting: we discuss the fast iterative solution of the least square systems, regularization of the data, and the treatment of outliers. A particular application concerns the approximate continuation of harmonic functions, an issue arising in geodesy. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28644 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Meschke, Günther A1 - Grytz, Rafael ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - MULTISCALE MODELING AND COMPUTATIONAL REMODELING OF HUMAN EYE TISSUES N2 - A stress based remodeling approach is used to investigate the sensitivity of the collagen architecture in humane eye tissues on the biomechanical response of the lamina cribrosa with a particular focus on the stress environment of the nerve fibers. This approach is based on a multi-level biomechanical framework, where the biomechanical properties of eye tissues are derived from a single crimped fibril at the micro-scale via the collagen network of distributed fibrils at the meso-scale to the incompressible and anisotropic soft tissue at the macro-scale. Biomechanically induced remodeling of the collagen network is captured on the meso-scale by allowing for a continuous reorientation of collagen fibrils. To investigate the multi-scale phenomena related to glaucomatous neuropathy a generalized computational homogenization scheme is applied to a coupled two-scale analysis of the human eye considering a numerical macro- and meso-scale model of the lamina cribrosa. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28712 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Gonzalez Calvet, Ramon ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - NEW FOUNDATIONS FOR GEOMETRIC ALGEBRA T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - New foundations for geometric algebra are proposed based upon the existing isomorphisms between geometric and matrix algebras. Each geometric algebra always has a faithful real matrix representation with a periodicity of 8. On the other hand, each matrix algebra is always embedded in a geometric algebra of a convenient dimension. The geometric product is also isomorphic to the matrix product, and many vector transformations such as rotations, axial symmetries and Lorentz transformations can be written in a form isomorphic to a similarity transformation of matrices. We collect the idea that Dirac applied to develop the relativistic electron equation when he took a basis of matrices for the geometric algebra instead of a basis of geometric vectors. Of course, this way of understanding the geometric algebra requires new definitions: the geometric vector space is defined as the algebraic subspace that generates the rest of the matrix algebra by addition and multiplication; isometries are simply defined as the similarity transformations of matrices as shown above, and finally the norm of any element of the geometric algebra is defined as the nth root of the determinant of its representative matrix of order n×n. The main idea of this proposal is an arithmetic point of view consisting of reversing the roles of matrix and geometric algebras in the sense that geometric algebra is a way of accessing, working and understanding the most fundamental conception of matrix algebra as the algebra of transformations of multilinear quantities. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27644 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - CHAP A1 - Wolff, Sebastian ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - NODALLY INTEGRATED FINITE ELEMENTS N2 - Nodal integration of finite elements has been investigated recently. Compared with full integration it shows better convergence when applied to incompressible media, allows easier remeshing and highly reduces the number of material evaluation points thus improving efficiency. Furthermore, understanding it may help to create new integration schemes in meshless methods as well. The new integration technique requires a nodally averaged deformation gradient. For the tetrahedral element it is possible to formulate a nodal strain which passes the patch test. On the downside, it introduces non-physical low energy modes. Most of these "spurious modes" are local deformation maps of neighbouring elements. Present stabilization schemes rely on adding a stabilizing potential to the strain energy. The stabilization is discussed within this article. Its drawbacks are easily identified within numerical experiments: Nonlinear material laws are not well represented. Plastic strains may often be underestimated. Geometrically nonlinear stabilization greatly reduces computational efficiency. The article reinterpretes nodal integration in terms of imposing a nonconforming C0-continuous strain field on the structure. By doing so, the origins of the spurious modes are discussed and two methods are presented that solve this problem. First, a geometric constraint is formulated and solved using a mixed formulation of Hu-Washizu type. This assumption leads to a consistent representation of the strain energy while eliminating spurious modes. The solution is exact, but only of theoretical interest since it produces global support. Second, an integration scheme is presented that approximates the stabilization criterion. The latter leads to a highly efficient scheme. It can even be extended to other finite element types such as hexahedrals. Numerical efficiency, convergence behaviour and stability of the new method is validated using linear tetrahedral and hexahedral elements. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-29028 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER - TY - CHAP A1 - Raue, Erich A1 - Timmler, Hans-Georg A1 - Schröter, Hendrik ED - Gürlebeck, Klaus ED - Könke, Carsten T1 - NON-LINEAR ANALYSIS OF SHELLS OF REVOLUTION USING MATHEMATICAL OPTIMISATION N2 - In the paper presented, reinforced concrete shells of revolution are analyzed in both meridional and circumferential directions. Taking into account the physical non-linearity of the material, the internal forces and the deflections of the shell as well as the strain distribution at the cross-sections are calculated. The behavior of concrete under compression is described by linear and non-linear stress-strain relations. The description of the behavior of concrete under tension must account for tension stiffening effects. A tri-linear function is used to formulate the material law of reinforcement. The problem cannot be solved analytically due to the physical non-linearity. Thus a numerical solution is formulated by means of the LAGRANGE Principle of the minimum of the total potential energy. The kinematically admissible field of deformation is defined by the displacements u in the meridional and w in the radial direction. These displacements must satisfy the equations of compatibility and the kinematical boundary conditions of the shell. The strains are linearly distributed across the wall thickness. The strain energy depends on the specific of the material behavior. Using integral formulations of the material law [1], the strain energy of each part of the cross-section is defined as a function of the strains at the boundaries of the cross-sections. The shell is discretised in the meridional direction. Various methods of numerical differentiation and numerical integration are applied in order to determine the deformations and the strain energy. The unknown displacements u and w are calculated by a non-restricted extremum problem based on the minimum of the total potential energy. From mathematical point of view, the objective function is a convex function, thus the minimum can be determined without difficulty. The advantage of this formulation is that unlike non-linear methods with path-following algorithms the calculation does not have to account for changing stiffness and load increments. All iterations necessary to find the solution are integrated into the “Solver”. The model presented provides many ways of investigating the influence of various material parameters on the stresses and deformations of the entire shell structure. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Architektur KW - Computerunterstütztes Verfahren KW - Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-28818 UR - http://euklid.bauing.uni-weimar.de/ikm2009/paper.html SN - 1611-4086 ER -