TY - JOUR A1 - Kavrakov, Igor A1 - Legatiuk, Dmitrii A1 - Gürlebeck, Klaus A1 - Morgenthal, Guido T1 - A categorical perspective towards aerodynamic models for aeroelastic analyses of bridge decks JF - Royal Society Open Science N2 - Reliable modelling in structural engineering is crucial for the serviceability and safety of structures. A huge variety of aerodynamic models for aeroelastic analyses of bridges poses natural questions on their complexity and thus, quality. Moreover, a direct comparison of aerodynamic models is typically either not possible or senseless, as the models can be based on very different physical assumptions. Therefore, to address the question of principal comparability and complexity of models, a more abstract approach, accounting for the effect of basic physical assumptions, is necessary. This paper presents an application of a recently introduced category theory-based modelling approach to a diverse set of models from bridge aerodynamics. Initially, the categorical approach is extended to allow an adequate description of aerodynamic models. Complexity of the selected aerodynamic models is evaluated, based on which model comparability is established. Finally, the utility of the approach for model comparison and characterisation is demonstrated on an illustrative example from bridge aeroelasticity. The outcome of this study is intended to serve as an alternative framework for model comparison and impact future model assessment studies of mathematical models for engineering applications. KW - Brücke KW - Aerodynamik KW - Aeroelastizität KW - bridge KW - abstract modelling KW - category theory KW - bridge aerodynamics KW - bridge aeroelasticity KW - aerodynamic models KW - model complexity KW - OA-Publikationsfonds2019 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190314-38656 UR - https://royalsocietypublishing.org/doi/10.1098/rsos.181848 IS - Volume 6, Issue 3 ER - TY - JOUR A1 - Mosavi, Amir A1 - Shamshirband, Shahaboddin A1 - Esmaeilbeiki, Fatemeh A1 - Zarehaghi, Davoud A1 - Neyshabouri, Mohammadreza A1 - Samadianfard, Saeed A1 - Ghorbani, Mohammad Ali A1 - Nabipour, Narjes A1 - Chau, Kwok-Wing T1 - Comparative analysis of hybrid models of firefly optimization algorithm with support vector machines and multilayer perceptron for predicting soil temperature at different depths JF - Engineering Applications of Computational Fluid Mechanics N2 - This research aims to model soil temperature (ST) using machine learning models of multilayer perceptron (MLP) algorithm and support vector machine (SVM) in hybrid form with the Firefly optimization algorithm, i.e. MLP-FFA and SVM-FFA. In the current study, measured ST and meteorological parameters of Tabriz and Ahar weather stations in a period of 2013–2015 are used for training and testing of the studied models with one and two days as a delay. To ascertain conclusive results for validation of the proposed hybrid models, the error metrics are benchmarked in an independent testing period. Moreover, Taylor diagrams utilized for that purpose. Obtained results showed that, in a case of one day delay, except in predicting ST at 5 cm below the soil surface (ST5cm) at Tabriz station, MLP-FFA produced superior results compared with MLP, SVM, and SVM-FFA models. However, for two days delay, MLP-FFA indicated increased accuracy in predicting ST5cm and ST 20cm of Tabriz station and ST10cm of Ahar station in comparison with SVM-FFA. Additionally, for all of the prescribed models, the performance of the MLP-FFA and SVM-FFA hybrid models in the testing phase was found to be meaningfully superior to the classical MLP and SVM models. KW - Bodentemperatur KW - Algorithmus KW - Maschinelles Lernen KW - Neuronales Netz KW - firefly optimization algorithm KW - soil temperature KW - artificial neural networks KW - hybrid machine learning KW - OA-Publikationsfonds2019 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200911-42347 UR - https://www.tandfonline.com/doi/full/10.1080/19942060.2020.1788644 VL - 2020 IS - Volume 14, Issue 1 SP - 939 EP - 953 ER - TY - JOUR A1 - Vollmer, Lisa T1 - Der Gentrifizierungsbegriff in wohnungspolitischen Protesten. Kommentar zu Neil Smiths „Für eine Theorie der Gentrifizierung: ‚Zurück in die Stadt‘ als Bewegung des Kapitals, nicht der Menschen“ (2019 [1979]) JF - sub\urban. zeitschrift für kritische stadtforschung N2 - Seit 50 Jahren wird über Erklärungsansätze für Gentrifizierung gestritten. Sehr viel länger schon wandert anlagesuchendes Kapital von einem Ort zum anderen und hinterlässt dabei Investitionsruinen einerseits und Menschen, die durch Verdrängung ihr Zuhause verlieren, andererseits. Sehr viel kürzer erst wird der Begriff Gentrifizierung hier und da von sozialen Bewegungen aufgegriffen, die sich mit letzterem Phänomen auseinandersetzen. In diesem Beitrag soll es nicht um die wissenschaftliche Debatte um Erklärungsansätze für Gentrifizierung und auch nicht um die wissenschaftliche Relevanz des Begriffes gehen, sondern um seine Rolle und Funktion in sozialen Bewegungen. KW - Soziale Bewegung KW - Gentrifizierung KW - Wohnen KW - OA-Publikationsfonds2019 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200122-40643 UR - https://zeitschrift-suburban.de/sys/index.php/suburban/article/view/493/740 VL - 2019 IS - Band 7, Heft 3 SP - 113 EP - 118 ER - TY - JOUR A1 - Bielik, Martin A1 - Schneider, Sven A1 - Kuliga, Saskia A1 - Griego, Danielle A1 - Ojha, Varun A1 - König, Reinhard A1 - Schmitt, Gerhard A1 - Donath, Dirk ED - Resch, Bernd ED - Szell, Michael T1 - Examining Trade-Offs between Social, Psychological, and Energy Potential of Urban Form JF - ISPRS International Journal of Geo-Information N2 - Urban planners are often challenged with the task of developing design solutions which must meet multiple, and often contradictory, criteria. In this paper, we investigated the trade-offs between social, psychological, and energy potential of the fundamental elements of urban form: the street network and the building massing. Since formal mehods to evaluate urban form from the psychological and social point of view are not readily available, we developed a methodological framework to quantify these criteria as the first contribution in this paper. To evaluate the psychological potential, we conducted a three-tiered empirical study starting from real world environments and then abstracting them to virtual environments. In each context, the implicit (physiological) response and explicit (subjective) response of pedestrians were measured. To quantify the social potential, we developed a street network centrality-based measure of social accessibility. For the energy potential, we created an energy model to analyze the impact of pure geometric form on the energy demand of the building stock. The second contribution of this work is a method to identify distinct clusters of urban form and, for each, explore the trade-offs between the select design criteria. We applied this method to two case studies identifying nine types of urban form and their respective potential trade-offs, which are directly applicable for the assessment of strategic decisions regarding urban form during the early planning stages. KW - Planung KW - social accessibility KW - urban perception KW - energy demand KW - urban form KW - trade-offs KW - OA-Publikationsfonds2019 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190408-38695 UR - https://www.mdpi.com/2220-9964/8/2/52 VL - 2019 EP - Volume 8, Issue 2, 52 ER - TY - JOUR A1 - Shamshirband, Shahaboddin A1 - Joloudari, Javad Hassannataj A1 - GhasemiGol, Mohammad A1 - Saadatfar, Hamid A1 - Mosavi, Amir A1 - Nabipour, Narjes T1 - FCS-MBFLEACH: Designing an Energy-Aware Fault Detection System for Mobile Wireless Sensor Networks JF - Mathematics N2 - Wireless sensor networks (WSNs) include large-scale sensor nodes that are densely distributed over a geographical region that is completely randomized for monitoring, identifying, and analyzing physical events. The crucial challenge in wireless sensor networks is the very high dependence of the sensor nodes on limited battery power to exchange information wirelessly as well as the non-rechargeable battery of the wireless sensor nodes, which makes the management and monitoring of these nodes in terms of abnormal changes very difficult. These anomalies appear under faults, including hardware, software, anomalies, and attacks by raiders, all of which affect the comprehensiveness of the data collected by wireless sensor networks. Hence, a crucial contraption should be taken to detect the early faults in the network, despite the limitations of the sensor nodes. Machine learning methods include solutions that can be used to detect the sensor node faults in the network. The purpose of this study is to use several classification methods to compute the fault detection accuracy with different densities under two scenarios in regions of interest such as MB-FLEACH, one-class support vector machine (SVM), fuzzy one-class, or a combination of SVM and FCS-MBFLEACH methods. It should be noted that in the study so far, no super cluster head (SCH) selection has been performed to detect node faults in the network. The simulation outcomes demonstrate that the FCS-MBFLEACH method has the best performance in terms of the accuracy of fault detection, false-positive rate (FPR), average remaining energy, and network lifetime compared to other classification methods. KW - Vernetzung KW - wireless sensor networks KW - machine learning KW - Funktechnik KW - Sensor KW - Maschinelles Lernen KW - Internet of Things KW - OA-Publikationsfonds2019 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200107-40541 UR - https://www.mdpi.com/2227-7390/8/1/28 VL - 2020 IS - Volume 8, Issue 1, article 28 PB - MDPI ER - TY - JOUR A1 - Morgenthal, Guido A1 - Eick, Jan Frederick A1 - Rau, Sebastian A1 - Taraben, Jakob T1 - Wireless Sensor Networks Composed of Standard Microcomputers and Smartphones for Applications in Structural Health Monitoring JF - Sensors - Special Issue Selected Papers from 7th Asia-Pacific Workshop on Structural Health Monitoring N2 - Wireless sensor networks have attracted great attention for applications in structural health monitoring due to their ease of use, flexibility of deployment, and cost-effectiveness. This paper presents a software framework for WiFi-based wireless sensor networks composed of low-cost mass market single-board computers. A number of specific system-level software components were developed to enable robust data acquisition, data processing, sensor network communication, and timing with a focus on structural health monitoring (SHM) applications. The framework was validated on Raspberry Pi computers, and its performance was studied in detail. The paper presents several characteristics of the measurement quality such as sampling accuracy and time synchronization and discusses the specific limitations of the system. The implementation includes a complementary smartphone application that is utilized for data acquisition, visualization, and analysis. A prototypical implementation further demonstrates the feasibility of integrating smartphones as data acquisition nodes into the network, utilizing their internal sensors. The measurement system was employed in several monitoring campaigns, three of which are documented in detail. The suitability of the system is evaluated based on comparisons of target quantities with reference measurements. The results indicate that the presented system can robustly achieve a measurement performance commensurate with that required in many typical SHM tasks such as modal identification. As such, it represents a cost-effective alternative to more traditional monitoring solutions. KW - Structural Health Monitoring KW - Mikrocomputer KW - Smartphone KW - Schwingungsmessung KW - Wireless sensor network KW - Raspberry Pi KW - Smartphones KW - Vibration measurements KW - OA-Publikationsfonds2019 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190514-39123 UR - https://www.mdpi.com/1424-8220/19/9/2070 VL - 2019 IS - Volume 19, Issue 9, 2070 PB - MDPI ER -