TY - JOUR A1 - Kavrakov, Igor A1 - Legatiuk, Dmitrii A1 - Gürlebeck, Klaus A1 - Morgenthal, Guido T1 - A categorical perspective towards aerodynamic models for aeroelastic analyses of bridge decks JF - Royal Society Open Science N2 - Reliable modelling in structural engineering is crucial for the serviceability and safety of structures. A huge variety of aerodynamic models for aeroelastic analyses of bridges poses natural questions on their complexity and thus, quality. Moreover, a direct comparison of aerodynamic models is typically either not possible or senseless, as the models can be based on very different physical assumptions. Therefore, to address the question of principal comparability and complexity of models, a more abstract approach, accounting for the effect of basic physical assumptions, is necessary. This paper presents an application of a recently introduced category theory-based modelling approach to a diverse set of models from bridge aerodynamics. Initially, the categorical approach is extended to allow an adequate description of aerodynamic models. Complexity of the selected aerodynamic models is evaluated, based on which model comparability is established. Finally, the utility of the approach for model comparison and characterisation is demonstrated on an illustrative example from bridge aeroelasticity. The outcome of this study is intended to serve as an alternative framework for model comparison and impact future model assessment studies of mathematical models for engineering applications. KW - Brücke KW - Aerodynamik KW - Aeroelastizität KW - bridge KW - abstract modelling KW - category theory KW - bridge aerodynamics KW - bridge aeroelasticity KW - aerodynamic models KW - model complexity KW - OA-Publikationsfonds2019 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20190314-38656 UR - https://royalsocietypublishing.org/doi/10.1098/rsos.181848 IS - Volume 6, Issue 3 ER - TY - INPR A1 - Kavrakov, Igor A1 - Morgenthal, Guido T1 - A synergistic study of a CFD and semi-analytical models for aeroelastic analysis of bridges in turbulent wind conditions N2 - Long-span bridges are prone to wind-induced vibrations. Therefore, a reliable representation of the aerodynamic forces acting on a bridge deck is of a major significance for the design of such structures. This paper presents a systematic study of the two-dimensional (2D) fluid-structure interaction of a bridge deck under smooth and turbulent wind conditions. Aerodynamic forces are modeled by two approaches: a computational fluid dynamics (CFD) model and six semi-analytical models. The vortex particle method is utilized for the CFD model and the free-stream turbulence is introduced by seeding vortex particles upstream of the deck with prescribed spectral characteristics. The employed semi-analytical models are based on the quasi-steady and linear unsteady assumptions and aerodynamic coefficients obtained from CFD analyses. The underlying assumptions of the semi-analytical aerodynamic models are used to interpret the results of buffeting forces and aeroelastic response due to a free-stream turbulence in comparison with the CFD model. Extensive discussions are provided to analyze the effect of linear fluid memory and quasi-steady nonlinearity from a CFD perspective. The outcome of the analyses indicates that the fluid memory is a governing effect in the buffeting forces and aeroelastic response, while the effect of the nonlinearity is overestimated by the quasi-steady models. Finally, flutter analyses are performed and the obtained critical velocities are further compared with wind tunnel results, followed by a brief examination of the post-flutter behavior. The results of this study provide a deeper understanding of the extent of which the applied models are able to replicate the physical processes for fluid-structure interaction phenomena in bridge aerodynamics and aeroelasticity. KW - Ingenieurwissenschaften KW - Aerodynamik KW - Bridge KW - Aerodynamic nonlinearity KW - Fluid memory KW - Vortex particle method KW - Buffeting KW - Flutter Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200206-40873 N1 - This is the pre-peer reviewed version of the following article: https://www.sciencedirect.com/science/article/abs/pii/S0889974617308423?via%3Dihub, which has been published in final form at https://doi.org/10.1016/j.jfluidstructs.2018.06.013 ER - TY - JOUR A1 - Morgenthal, Guido A1 - Yamasaki, Y. T1 - Aerodynamic Behaviour of Very Long Cable-Stayed Bridges during Construction JF - Procedia Engineering N2 - Stonecutters and Sutong Bridge have pushed the world record for main span length of cable-stayed bridges to over 1000m. The design of these bridges, both located in typhoon prone regions, is strongly influenced by wind effects during their erection. Rigorous wind tunnel test programmes have been devised and executed to determine the aerodynamic behaviour of the structures in the most critical erection conditions. Testing was augmented by analytical and numerical analyses to verify the safety of the structures throughout construction and to ensure that no serviceability problems would affect the erection process. This paper outlines the wind properties assumed for the bridge sites, the experimental test programme with some of its results, the dynamic properties of the bridges during free cantilevering erection and the assessment of their aerodynamic performance. Along the way, it discusses the similarities and some revealing differences between the two bridges in terms of their dynamic response to wind action. KW - Kabelbrücke KW - Windkanal KW - Cable-stayed bridges; wind engineering; wind tunnel testing; construction Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170425-31525 SP - 1463 EP - 1471 ER - TY - INPR A1 - Kavrakov, Igor A1 - Morgenthal, Guido T1 - Aeroelastic analyses of bridges using a Pseudo-3D vortex method and velocity-based synthetic turbulence generation N2 - The accurate representation of aerodynamic forces is essential for a safe, yet reasonable design of long-span bridges subjected to wind effects. In this paper, a novel extension of the Pseudo-three-dimensional Vortex Particle Method (Pseudo-3D VPM) is presented for Computational Fluid Dynamics (CFD) buffeting analysis of line-like structures. This extension entails an introduction of free-stream turbulent fluctuations, based on the velocity-based turbulence generation. The aerodynamic response of a long-span bridge is obtained by subjecting the 3D dynamic representation of the structure to correlated free-stream turbulence in two-dimensional (2D) fluid planes, which are positioned along the bridge deck. The span-wise correlation of the free-stream turbulence between the 2D fluid planes is established based on Taylor's hypothesis of frozen turbulence. Moreover, the application of the laminar Pseudo-3D VPM is extended to a multimode flutter analysis. Finally, the structural response from the Pseudo-3D flutter and buffeting analyses is verified with the response, computed using the semi-analytical linear unsteady model in the time-domain. Meaningful merits of the turbulent Pseudo-3D VPM with respect to the linear unsteady model are the consideration of the 2D aerodynamic nonlinearity, nonlinear fluid memory, vortex shedding and local non-stationary turbulence effects in the aerodynamic forces. The good agreement of the responses for the two models in the 3D analyses demonstrates the applicability of the Pseudo-3D VPM for aeroelastic analyses of line-like structures under turbulent and laminar free-stream conditions. KW - Bridge KW - Aerodynamik KW - Ingenieurwissenschaften KW - Computational Bridge Aerodynamics KW - Buffeting KW - Flutter KW - Long-span Bridges KW - Vortex Particle Method Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200206-40864 N1 - This is the pre-peer reviewed version of the following article: https://www.sciencedirect.com/science/article/pii/S0141029617322976?via%3Dihub, which has been published in final form at https://doi.org/10.1016/j.engstruct.2018.08.093 ER - TY - CHAP A1 - Jung, Bastian A1 - Morgenthal, Guido ED - Gürlebeck, Klaus ED - Lahmer, Tom ED - Werner, Frank T1 - ASSESSMENT OF INTEGRAL BRIDGES USING QUANTITATIVE MODEL EVALUATION T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - Numerical simulations in the general field of civil engineering are common for the design process of structures and/or the assessment of existing buildings. The behaviour of these structures is analytically unknown and is approximated with numerical simulation methods like the Finite Element Method (FEM). Therefore the real structure is transferred into a global model (GM, e.g. concrete bridge) with a wide range of sub models (partial models PM, e.g. material modelling, creep). These partial models are coupled together to predict the behaviour of the observed structure (GM) under different conditions. The engineer needs to decide which models are suitable for computing realistically and efficiently the physical processes determining the structural behaviour. Theoretical knowledge along with the experience from prior design processes will influence this model selection decision. It is thus often a qualitative selection of different models. The goal of this paper is to present a quantitative evaluation of the global model quality according to the simulation of a bridge subject to direct loading (dead load, traffic) and indirect loading (temperature), which induce restraint effects. The model quality can be separately investigated for each partial model and also for the coupled partial models in a global structural model. Probabilistic simulations are necessary for the evaluation of these model qualities by using Uncertainty and Sensitivity Analysis. The method is applied to the simulation of a semi-integral concrete bridge with a monolithic connection between the superstructure and the piers, and elastomeric bearings at the abutments. The results show that the evaluation of global model quality is strongly dependent on the sensitivity of the considered partial models and their related quantitative prediction quality. This method is not only a relative comparison between different models, but also a quantitative representation of model quality using probabilistic simulation methods, which can support the process of model selection for numerical simulations in research and practice. KW - Angewandte Informatik KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170314-27662 UR - http://euklid.bauing.uni-weimar.de/ikm2012 SN - 1611-4086 ER - TY - JOUR A1 - Kavrakov, Igor A1 - Kareem, Ahsan A1 - Morgenthal, Guido T1 - Comparison Metrics for Time-histories: Application to Bridge Aerodynamics N2 - Wind effects can be critical for the design of lifelines such as long-span bridges. The existence of a significant number of aerodynamic force models, used to assess the performance of bridges, poses an important question regarding their comparison and validation. This study utilizes a unified set of metrics for a quantitative comparison of time-histories in bridge aerodynamics with a host of characteristics. Accordingly, nine comparison metrics are included to quantify the discrepancies in local and global signal features such as phase, time-varying frequency and magnitude content, probability density, nonstationarity and nonlinearity. Among these, seven metrics available in the literature are introduced after recasting them for time-histories associated with bridge aerodynamics. Two additional metrics are established to overcome the shortcomings of the existing metrics. The performance of the comparison metrics is first assessed using generic signals with prescribed signal features. Subsequently, the metrics are applied to a practical example from bridge aerodynamics to quantify the discrepancies in the aerodynamic forces and response based on numerical and semi-analytical aerodynamic models. In this context, it is demonstrated how a discussion based on the set of comparison metrics presented here can aid a model evaluation by offering deeper insight. The outcome of the study is intended to provide a framework for quantitative comparison and validation of aerodynamic models based on the underlying physics of fluid-structure interaction. Immediate further applications are expected for the comparison of time-histories that are simulated by data-driven approaches. KW - Ingenieurwissenschaften KW - Aerodynamik KW - Brücke KW - Bridge Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200625-41863 UR - https://ascelibrary.org/doi/10.1061/%28ASCE%29EM.1943-7889.0001811 N1 - This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This material may be found at https://ascelibrary.org/doi/10.1061/%28ASCE%29EM.1943-7889.0001811. N1 - This is the final draft of the following article: https://ascelibrary.org/doi/10.1061/%28ASCE%29EM.1943-7889.0001811, which has been published in final form at https://doi.org/10.1061/(ASCE)EM.1943-7889.0001811 ER - TY - INPR A1 - Kavrakov, Igor A1 - Argentini, Tommaso A1 - Omarini, Simone A1 - Rocchi, Daniele A1 - Morgenthal, Guido T1 - Determination of complex aerodynamic admittance of bridge decks under deterministic gusts using the Vortex Particle Method N2 - Long-span bridges are prone to wind-induced vibrations. Therefore, a reliable representation of the aerodynamic forces acting on a bridge deck is of a major significance for the design of such structures. This paper presents a systematic study of the two-dimensional (2D) fluid-structure interaction of a bridge deck under smooth and turbulent wind conditions. Aerodynamic forces are modeled by two approaches: a computational fluid dynamics (CFD) model and six semi-analytical models. The vortex particle method is utilized for the CFD model and the free-stream turbulence is introduced by seeding vortex particles upstream of the deck with prescribed spectral characteristics. The employed semi-analytical models are based on the quasi-steady and linear unsteady assumptions and aerodynamic coefficients obtained from CFD analyses. The underlying assumptions of the semi-analytical aerodynamic models are used to interpret the results of buffeting forces and aeroelastic response due to a free-stream turbulence in comparison with the CFD model. Extensive discussions are provided to analyze the effect of linear fluid memory and quasi-steady nonlinearity from a CFD perspective. The outcome of the analyses indicates that the fluid memory is a governing effect in the buffeting forces and aeroelastic response, while the effect of the nonlinearity is overestimated by the quasi-steady models. Finally, flutter analyses are performed and the obtained critical velocities are further compared with wind tunnel results, followed by a brief examination of the post-flutter behavior. The results of this study provide a deeper understanding of the extent of which the applied models are able to replicate the physical processes for fluid-structure interaction phenomena in bridge aerodynamics and aeroelasticity. KW - Bridge KW - Aerodynamik KW - Ingenieurwissenschaften KW - Aerodynamic admittance KW - Computational fluid dynamics KW - Vortex particle method KW - Buffeting KW - Long-span bridges Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20200206-40883 N1 - This is the pre-peer reviewed version of the following article: https://www.sciencedirect.com/science/article/pii/S0167610519305719?via%3Dihub, which has been published in final form at https://doi.org/10.1016/j.jweia.2019.103971 ER - TY - JOUR A1 - Achenbach, Marcus A1 - Lahmer, Tom A1 - Morgenthal, Guido T1 - Identification of the thermal properties of concrete for the temperature calculation of concrete slabs and columns subjected to a standard fire—Methodology and proposal for simplified formulations JF - Fire Safety Journal 87 N2 - The fire resistance of concrete members is controlled by the temperature distribution of the considered cross section. The thermal analysis can be performed with the advanced temperature dependent physical properties provided by 5EN6 1992-1-2. But the recalculation of laboratory tests on columns from 5TU6 Braunschweig shows, that there are deviations between the calculated and measured temperatures. Therefore it can be assumed, that the mathematical formulation of these thermal properties could be improved. A sensitivity analysis is performed to identify the governing parameters of the temperature calculation and a nonlinear optimization method is used to enhance the formulation of the thermal properties. The proposed simplified properties are partly validated by the recalculation of measured temperatures of concrete columns. These first results show, that the scatter of the differences from the calculated to the measured temperatures can be reduced by the proposed simple model for the thermal analysis of concrete. KW - Sensitivitätsanalyse KW - Thermodynamische Eigenschaft KW - Fire resistance; Parameter optimization; Sensitivity analysis; Thermal properties Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170331-30929 UR - http://www.sciencedirect.com/science/article/pii/S0379711216301965 SP - 80 EP - 86 ER - TY - JOUR A1 - Taraben, Jakob A1 - Morgenthal, Guido T1 - Integration and Comparison Methods for Multitemporal Image-Based 2D Annotations in Linked 3D Building Documentation JF - Remote Sensing N2 - Data acquisition systems and methods to capture high-resolution images or reconstruct 3D point clouds of existing structures are an effective way to document their as-is condition. These methods enable a detailed analysis of building surfaces, providing precise 3D representations. However, for the condition assessment and documentation, damages are mainly annotated in 2D representations, such as images, orthophotos, or technical drawings, which do not allow for the application of a 3D workflow or automated comparisons of multitemporal datasets. In the available software for building heritage data management and analysis, a wide range of annotation and evaluation functions are available, but they also lack integrated post-processing methods and systematic workflows. The article presents novel methods developed to facilitate such automated 3D workflows and validates them on a small historic church building in Thuringia, Germany. Post-processing steps using photogrammetric 3D reconstruction data along with imagery were implemented, which show the possibilities of integrating 2D annotations into 3D documentations. Further, the application of voxel-based methods on the dataset enables the evaluation of geometrical changes of multitemporal annotations in different states and the assignment to elements of scans or building models. The proposed workflow also highlights the potential of these methods for condition assessment and planning of restoration work, as well as the possibility to represent the analysis results in standardised building model formats. KW - Bauwesen KW - Punktwolke KW - Denkmalpflege KW - OA-Publikationsfonds2022 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20220513-46488 UR - https://www.mdpi.com/2072-4292/14/9/2286 VL - 2022 IS - Volume 14, issue 9, article 2286 SP - 1 EP - 20 PB - MDPI CY - Basel ER - TY - CHAP A1 - Abbas, Tajammal A1 - Morgenthal, Guido T1 - Model combinations for assessing the flutter stability of suspension bridges T2 - Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar N2 - Long-span cable supported bridges are prone to aerodynamic instabilities caused by wind and this phenomenon is usually a major design criterion. If the wind speed exceeds the critical flutter speed of the bridge, this constitutes an Ultimate Limit State. The prediction of the flutter boundary therefore requires accurate and robust models. This paper aims at studying various combinations of models to predict the flutter phenomenon. Since flutter is a coupling of aerodynamic forcing with a structural dynamics problem, different types and classes of models can be combined to study the interaction. Here, both numerical approaches and analytical models are utilised and coupled in different ways to assess the prediction quality of the hybrid model. Models for aerodynamic forces employed are the analytical Theodorsen expressions for the motion-enduced aerodynamic forces of a flat plate and Scanlan derivatives as a Meta model. Further, Computational Fluid Dynamics (CFD) simulations using the Vortex Particle Method (VPM) were used to cover numerical models. The structural representations were dimensionally reduced to two degree of freedom section models calibrated from global models as well as a fully three-dimensional Finite Element (FE) model. A two degree of freedom system was analysed analytically as well as numerically. Generally, all models were able to predict the flutter phenomenon and relatively close agreement was found for the particular bridge. In conclusion, the model choice for a given practical analysis scenario will be discussed in the context of the analysis findings. KW - Angewandte Mathematik KW - Computerunterstütztes Verfahren KW - Angewandte Informatik Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:gbv:wim2-20170306-27574 SN - 1611-4086 ER -